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(57) ABSTRACT

The invention provides 3D touch gesture recognition on
touch surfaces incorporating finger posture detection and
includes a touch user interface device in communication with
a processing device. The interface device includes a sensor
array for sensing spatial information of one or more regions of
contact and provides finger contact information in the form of
a stream of frame data. A frame is read from the sensor array,
subjected to thresholding, normalization, and feature extrac-
tion operations to produce a features vector. A multi-dimen-
sional gesture space is constructed having desired set offea-
tures, each represented by a space dimension. A gesture
trajectory is a sequence of transitions between pre-calculated
clusters, and when a specific gesture trajectory is detected, a
control signal is generated.
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3D FINGER POSTURE DETECTION AND
GESTURE RECOGNITION ON TOUCH

SURFACES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] Pursuant to 35 U.S.C. §119(e), this application
claims benefit of priority from Provisional U.S. Patent appli-
cation Ser. No. 611506,096, filed Jul. 9, 2011, the contents of
which are incorporated by reference.

COPYRIGHT & TRADEMARK NOTICES

[0002] A portion of the disclosure of this patent document
may contain material, which is subject to copyright protec-
tion. Certain marks referenced herein may be common law or
registered trademarks of the applicant, the assignee or third
parties affiliated or unaffiliated with the applicant or the
assignee. Use of these marks is for providing an enabling
disclosure by way of example and shall not be construed to
exclusively limit the scope of the disclosed subject matter to
material associated with such marks.

BACKGROUND OF THE INVENTION

[0003] The invention relates to gesture recognition on
touch surfaces, and more specifically to 3D finger posture
detection in the recognition of gestures with 3D characteris-
tics.
[0004] Touch surfaces are becoming more prevalent in
today' s technology, appearing as touch screens onmobile and
stationary devices, laptop touchpads, electronic books, com-
puter mice, etc. They find uses in many diverse areas such as
manufacturing and medical systems, assistive technologies,
entertainment, human-robot interaction and others. Signifi-
cant progress in touch-sensitive hardware has been made in
recent years, making available on the market touch sensors
which are smaller, longer lasting, more accurate and more
affordable than predecessors. With these technological
advancements, gesture-based interfaces are certain to become
more prevalent as gestures are among the most primary and
expressive form of human communications [42].
[0005] However modern models of gesture interaction on
touch surfaces remain relatively rudimentary. Companies like
Apple and Microsoft are gradually introducing in their prod-
ucts gesture metaphors, but they are still limited to abstract
gestures like "two-finger swipe" or primitive metaphors such
as "pinch to zoom". However, significant additional progress
can be made in the area of gesture recognition, allowing for
the introduction of more complex gesture metaphors, and
thus more complex interaction scenarios.
[0006] One contributing factor currently hindering the
introduction of richer gestures is the simplistic 2D interaction
model employed in mouse, trackball, and touch user interface
devices. Essentially all modem touch interfaces consider only
the planar finger contact position with the touchpad, limiting
themselves to measurement of a pair of coordinates for each
finger application. A notable exception is the work by New
Renaissance Institute, related to the real-time extraction of
3D posture information from tactile images [29, 15, 25].
Using 3D finger posture rather than just 2D contact point in
gesture definition opens the door to very rich, expressive, and
intuitive gesture metaphors. These can be added to touchpads,
touch screens, and can be implemented on the back of a
mouse [27, 18].
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[0007] The present invention accordingly addresses ges-
ture recognition on touch surfaces incorporating 3D finger
posture detection so as to implement recognition of gestures
with 3D characteristics.

SUMMARY

[0008] For purposes of summarizing, certain aspects,
advantages, and novel features are described herein. Not all
such advantages may be achieved in accordance with anyone
particular embodiment. Thus, the disclosed subject matter
may be embodied or carried out in a manner that achieves or
optimizes one advantage or group of advantages without
achieving all advantages as may be taught or suggested
herein.
[0009] The invention provides for gesture recognition on
touch surfaces incorporating 3D finger posture detection to
implement recognition of gestures with 3D characteristics.
[0010] In one aspect of the invention, a system for 3D
gesture recognition on touch surfaces comprises a touch user
interface device in communication with a processing device.
The interface device includes a sensor array for sensing spa-
tial information of one or more regions of contact and pro-
vides finger contact information in the form of a stream of
frame data.
[0011] The processing device reads frame data from the
sensor array, produces modified frame data by perform
thresholding and normalization operations on the frame data,
detects a first region of contact corresponding to a finger
touch, and produces a features vector by extracting at least
one feature of the modified frame data to. The processing
devise then creates a gesture trajectory in a multi -dimensional
gesture space wherein, detects a specific gesture, and gener-
ates a control signal in response to the specific gesture. The
multi-dimensional gesture space comprises a plurality offea-
ture vectors, and the gesture trajectory is a sequence oftran-
sitions between regions of the multi-dimensional gesture
space
[0012] Various features of the invention can be imple-
mented singly or in combination. These features include:
using a multivariate Kalman filter to overcome the presence
of random signal noise to avoid jittery cursor movement when
finger position controls a user interface cursor; using High
performance segmentation using Connected Component
Labeling with subsequent label merging employing a Haus-
dorff metric for the implementation of multi-touch capabili-
ties; automating a threshold selection procedure by training
anArtificial Neural Network (ANN) and measuring how vari-
0us thresholds affect the miss rate; constructing a multi-
dimensional gesture space using a desired set of features (not
just centroid position and velocity), wherein each feature is
represented by a space dimension; representing a gesture
trajectory as a sequence of transitions between pre-calculated
clusters in vector space ("Vector Quantization codebook")
allows model it as a Markov Process; and implementing a
principle component analysis operation.
[0013] These and other features, aspects, and advantages of
the present invention will become better understood with
reference to the following description and claims.
[0014] BRIEF DESCRIPTIONS OF THE DRAWINGS
[0015] The above and other aspects, features and advan-
tages of the present invention will become more apparent
upon consideration of the following description of preferred
embodiments taken in conjunction with the accompanying
drawing figures, wherein:
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[0016] FIG. 1 depicts a 3D coordinate system with the
Z-axis is defined vertically, perpendicular to X -Y plane using
notation for angular features (Euler angles).
[0017] FIG. 2 depicts a process provided for by the inven-
tion wherein a frame is read from the sensor array, subjected
to thresholding and normalization operations resulting in a
modified version of the frame which is in tum subjected to
feature extraction operations to produce a features vector.
[0018] FIG. 3 depicts finger posture changes which would
cause variation of estimate Euler's <jJ angle of the finger with
respect to the touch surface.
[0019] FIG. 4 depicts finger posture changes which would
cause variation of estimate Euler's 1jJ angle of the finger with
respect to the touch surface.
[0020] FIG. 5 illustrates how as a finger rolls on a touch
surface away from a neutral position, the leading edge is
usually "flatter" as compared to the trailing edge.
[0021] FIG. 6 depicts a representation wherein the curved
shape of edges of an area of finger contact with a touch surface
is approximated with second degree polynomials.
[0022] FIG. 7 depicts finger posture changes which would
cause variation of estimate Euler's 8 angle of the finger with
respect to the touch surface.
[0023] FIG. 8 illustrates the use of row and colunm scan-
ning to find the left, right, top, and bottom finger edges of a
finger shape measurement, wherein rows and columns are
defined in a coordinate system in which projection of major
axis a finger distal phalanx to X-Y plane is parallel to Y axis.
[0024] FIG.9 shows results of a <jJ (yaw angle) correction as
provided for by the invention.
[0025] FIG. 10 shows results of <jJ correction on left and
right edge detection operations as provided for by the inven-
tion.
[0026] FIG. 11 depicts a representative dampening filter
operation as provided for by the invention.
[0027] FIG. 12 shows a finger centroid trajectory ona touch
surface, with the dotted line showing the original value, and
the solid line a value smoothed by a Kalman filter as provided
for by the invention.
[0028] FIG. 13 depicts an architecture of a gesture recog-
nition module as provided for by the invention.
[0029] FIG. 14 depicts a frame for a sample finger applica-
tion comprising defective pixels.
[0030] FIG. 15 depicts representative pressure distribution
histograms, based on statistics collected overtime for anoma-
lous pixel with coordinates (14, 33) and its immediate neigh-
bors.
[0031] FIG. 16 depicts the Mean Squared Error between the
pressure distribution histogram of every pixel and the pres-
sure distribution histograms of its neighbors.
[0032] FIG. 17 depicts a camera-based optical sensor that
easily and inexpensively allows acquisition of high resolution
touch data and implements optical user interface sensing.
[0033] FIG. 18 depicts an architecture of an example rep-
resentative control system whose inputs are gesture label and
smoothed signals from a gesture recognition module such as
that depicted in FIG. 13.
[0034] FIG. 19 depicts a representation of a OWl Robotic
Arm [l l jproduct, used in an application of the invention.
[0035] FIG. 20 depicts an example of high performance
segmentation using Connected Component Labeling with
subsequent label merging employing a Hausdorff metric
wherein original sensor data is shown along side the two
distinct finger images resulting from this operation.
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[0036] FIG. 21 depicts a three dimensional gesture space
with gesture trajectory points clustered using Cosine Similar-
ity as provided for by the invention.
[0037] FIG. 22 depicts an alternate visualization of clusters
from FIG. 21, here employing multivariate Gaussian repre-
sented as an ellipsoid based on a covariance matrix of eigen-
system and using 0.95 critical value of x" (Chi-square) distri-
bution.

DETAILED DESCRIPTION

[0038] In the following description, reference is made to
the accompanying drawing figures which form a part hereof,
and which show by way of illustration specific embodiments
of the invention. It is to be understood by those of ordinary
skill in this technological field that other embodiments may
be utilized, and structural, electrical, as well as procedural
changes may be made without departing from the scope of the
present invention.
[0039] In the following description, numerous specific
details are set forth to provide a thorough description of
various embodiments. Certain embodiments may be prac-
ticed without these specific details or with some variations in
detail. In some instances, certain features are described in less
detail so as not to obscure other aspects. The level of detail
associated with each of the elements or features should not be
construed to qualify the novelty or importance of one feature
over the others.
[0040] 1 Introduction
[0041] The present invention accordingly addresses ges-
ture recognition on touch surfaces incorporating 3D finger
posture detection so as to implement recognition of gestures
with 3D characteristics.
[0042] 1.1 Finger Posture
[0043] Consider the interaction scenario of the user per-
forming finger gestures ona flat touch-sensitive surface. Each
finger contacting the touch surface has a position and posture.
To describe these, a coordinate system is introduced.
[0044] In the coordinate system used in this article, an X -Y
plane is aligned atop of the touch-sensitive surface, with the Y
axis aligned perpendicularly to the user. A Z-axis is defined
vertically, perpendicular to X -Y plane. This is the coordinate
system is illustrated in FIG. 1.
[0045] Most existing touch interfaces operate only from
finger position, which represents a point of contact between
finger and touch surface in X-Y plane with two-dimensional
coordinates.
[0046] However, this same point of contact could corre-
spond to different finger postures in three dimensional space.
A representation of the posture could be expressed via Euler
angles, commonly denoted by letters: (<jJ, 8, 1jJ). There are
several conventions for expressing these angles, but in this
article Z-X -Z convention is used. The Euler angles describing
finger posture are shown in FIG. 1.
[0047] When designing user interaction on a touch surface
it is convenient to define a comfortable and convenient finger
"neutral posture;" the posture which causes least discomfort
to the user during long term use and is conveniently posed to
be a starting point for most common touchpad actions. Some
recommendations made in ergonomic studies [8] recommend
a straight wrist posture while avoiding excess finger flexion
and static loading of the arm and shoulder.
[0048] 2 Feature Extraction
[0049] In one implementation, the touch surface comprises
a touch-sensitive sensor array. Each sensor array reading is a
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matrix of individual sensor's intensity values, representing
pressure, brightness, proximity, etc. depending on the sensing
technology used. This matrix of values at a given instant is
called a frame and individual elements of this matrix are
called pixels (in some literature, the term "sensels" is used).
In an example arrangement, each frame first passes through a
"frame pre-processing" step which includes pixel value nor-
malization, accommodating defective sensors (see Section
4.1.1), and thresholding (see Section 4.1.2).
[0050] The next step is feature extraction: calculating a set
of features (feature vector) for each frame. Each feature is
described in Section 2.2.
[0051] The process above is illustrated in FIG. 2, wherein:

[0052] Step 1 represents a frame, as read from the sensor
array.

[0053] Step 2 represents a thresholded and normalized
version of the frame, used for feature extraction.

[0054] Step 3 represents the output from the feature
extraction step-a features vector.

[0055] 2.1 Image Moments
[0056] Discrete Cartesian geometric moments are com-
monly used in the analysis of two-dimensional images in
machine vision (for example, see [5], [39], [4])
[0057] A representative example moments definition
arrangement employs various notion a pixel intensity func-
tion. There are two useful kinds of pixel intensity function:

[0058] The first pixel intensity function, Iraw(X, y) sim-
ply returns the frame pixel's value.

[0059] The second pixel intensity function will use a step
threshold function and will return zero for sensor pixel
values below a specified threshold and 1 for values
above it, effectively producing a binary image:

{
1 Imw(x, y) >= threshold

hin(X, y) = 0 Imw(x, y) < threshold

[0060] The moment of order (p+q) for a gray scale image of
size M by N with pixel intensities Iraw can be defined as:

M N

Mp.q = ~~xPyqlmw(x, y).
x=l y=l

[0061] A variant of this same moment, using Ibin, is:

M N

Mp.q = ~~XPyqhin(X, y)
x=l y=l

[0062] A central moment of order (p+q) for a gray scale
image of size M by N with pixel intensities Iraw is defined as:

M N

Jip.q = ~ ~ (x - x)P(y - sr Imw(x, y)
x=l y=l
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[0063] A variant of the same central moment, using Ibin is:

M N

J.lpq = ~~(x-xJP(y-y)qhin(X, y)
x=l y=l

(5)

[0064] 2.2 Features
[0065] In this section some representative features that can
be extracted from a frame are provided.
[0066] 2.2.1 Area
[0067] Mo.o is the number of pixels in frame with value
exceeding the specified threshold. This is sometimes called
area, and this term will be subsequently used to describe this
feature.
[0068] The term "finger imprint" will be used to refer to a
subset of frame pixels with measurement values exceeding
the specified threshold-this corresponds to a region of con-
tact by a user's finger. Note that in multi-touch operation or
multi-touch usage situations there will be multiple finger
imprints that can be measured from the touch sensor.
[0069] 2.2.2 Average Intensity
[0070] This feature represents an average intensity of non-
zero pixels in the frame:

, Mo.o
l=-

Mo.o

(6)

(1)

[0071] 2.2.3 Centroids
[0072] Interpreting pixel intensity function as a surface
density function allows calculation of the geometric centroid
of a finger imprint.
[0073] While using Iraw as an intensity function gives:

- MlO
X=-

Moo

(7)

- MOl
Y= ---

Moo

(2)

while using Ibin as an intensity function gives:

(3)

MlO
X=-

Moo

MOl
Y= Moo

(8)

[0074] Centroids can be used to estimate finger position.
See Section 2.4.1 for details.
[0075] 2.2.4 Eigenvalues of the Covariance Matrix
[0076] A covariance matrix OfIbin(X, y) is:

(4)

[
J.l2.0 J.ll.l 1
J.ll.l J.lO.2

(9)
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[0077] The first and second eigenvalues of the matrix in
equation 9 are:

A _ J.lO,2 + J.l2,O - ~ J.l6,2 + 4J.lT,1 - 2J.lO,2J.l2,O + J.l~,o
1 - 2

A _ J.lO,2 + J.l2,O + ~ J.l6,2 + 4J.lT,1 - 2J.lO,2J.l2,O + J.l~,o
2 - 2

[0078] The eigenvalues Al and A2 are proportional to the
squared length of the axes of finger imprint as measured on a
touch sensor, From these one can form 81 and 82 are two
features representing scale-invariant normalizations of Al and
A2:

[0079] 2,2,5 Euler's <p Angle
[0080] A finger imprint typically has a shape of a (usually
oblong) blob, The aspects of the asymmetry of this blob could
be used to estimate Euler's <p angle,
[0081] Example finger posture changes which would cause
variation of <p are shown in FIG, 3,
[0082] The eigenvectors of the matrix in equation 9 corre-
spond to the major and minor axes of the finger imprint, <p can
be calculated as an angle of the major axis, represented by the
eigenvector associated with the largest eigenvalue [5]:

if; - ~tan-l(~)
- 2 J.l2,O - J.lO,2

[0083] An alternative formula that could be used to calcu-
late <p is:

,J, 1 -1 (J.l2,O -J.lO,2)'f/= -cot ---
2 2J.ll,1

[0084] One can use one of the above equations (12 or 13),
depending on which of fl1 1 or fl2 a-flo 2 is zero, to avoid an
undefined value caused by' division by 'zero[19],
[0085] Due to anatomic limitations and ergonomic consid-
erations, most user interactions on touch surfaces fall within
a certain range of <p angles, somewhat centered around a value
of <p corresponding to a neutral posture, Since equation 12
could never numerically evaluate to ±rt/2 and equation 13
could never numerically evaluate to -rt/2 it is convenient to
choose a coordinate system in which the <p angle correspond-
ing to a neutral posture does not fall close to nrt+rt!2, n EOZ
minimize the likelihood of their occurrence, For example, a
coordinate system in which <p value for neutral posture equals
o is a good choice,
[0086] In real-time systems, instead of equation 13 a high-
performance closed- form single scan algorithm [19] could be
used,
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(10)

[0087] 2,2,6 Euler's Angle

[0088] Example finger posture changes which would cause
variation of Euler's 1.jJ angle are shown in FIG, 4, This could
be informally described as "rolling" a finger on the surface,

[0089] An accurate estimation of this angle based on finger
imprint is challenging, Some approaches which could be used
to estimate 1.jJ are:

(11)

[0090] Magnitude of a projection of vector (x,y),(x,y) to
X-axis (performed after <p correction, as described in
Section 2,3);

[0091] Skewness of per-column sums of pixel intensi-
ties;

[0092] A slope, found by applying linear regression to
per-column sums of pixel's intensities

[0093] Ratio of eigenvalues;
[0094] Shape-based algorithms,

[0095] The shape-based approach described below is par-
ticularly useful for optical sensors (discussed in Section 4,],
2) and capacitive tactile array sensors as these exhibit very
little pixel intensity variation within the finger imprint area,
limiting the effectiveness of approaches 1-4,

[0096] While the finger is in a neutral posture, the left and
right edges of its imprint shape typically have roughly the
same curvature, As the finger rolls, away from the neutral
position the leading edge is usually "flatter" compared to the
trailing edge (as shown in FIG, 5), As 1.jJ increases, the shapes
change accordingly: the leading edge becomes flatter while
the trailing edge becomes more pronouncedly curved,

[0097] These changes in curvature permit the value of Eul-
er's 1.jJ angle to be estimated based on the difference between
edge curvatures [47] using the following steps:
[0098] The first step is left and right imprint's edge detec-
tion, which is performed after initial thresholding and <p cor-
rection (described in Section 2,3), This could be done using
zero-crossing on per-row intensity values, however more
sophisticated algorithms such as Canny Edge Detector could
also be used,

[0099] The second step is a polynomial curve fitting to the
sets of points constituting the left and right edges, The row
number is interpreted as abscissa and column number as an
ordinate, The shape of the edges is approximated with a
second degree polynomial, as shown in FIG, 6,

[0100] Iffor a given edge the variable r denotes row number
and the variable c column number, the equation describing the
edge would be:

(12)

(13)

(14)

[0101] The polynomial coefficients could be estimated
using least squares:

(15)

[0102] The signed curvature of a parabola specified by
equation 14 is:

c"
k=---3

(1 + c,2)2

(16)
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[0103] Taking derivatives gives us:

k = 2_a=-2-----;-3

(1 + (al + 2a2r?)2

[0104] A parabola curvature is greatest at vertex which is
located at:

al
rv=--

2a2

[0105] Thus a signed curvature at vertex point could be
calculated by substituting r in Equation 17 with r, from Equa-
tion 18:

which is also a second derivative c" from Equation 14. As
such it will have opposite signs for parabolas fitting the left
and right edges, as one of parabolas will typically concave left
while other will typically concave right.
[0106] The sum of the two kv terms will change magnitudes
and signs in a way that monotonically tracks the changing LP
angle that is defined to be zero when parabolas are similar,
negative in one direction, and positive in the opposite direc-
tion:

where left, and right; are curvature values at vertex point for
parabolas fit to the l~ft and right edges of finger imprint.
Substituting k, using Equation 19 gives the even simpler
formula:

where lefta2 and rigln.., are a2 coefficients from Equation 14
from parabolas fit to left and right edges of finger imprint,
found using Equation 15.
[0107] 2.2.7 Euler's 8 Angle
[0108] Example finger posture changes which would cause
variation of Euler's 8 angle are shown in FIG. 7.
[0109] A shape-based algorithm which could be used to
estimate 8 is described below. Rowand colunm scans are used
to find the top, bottom, left and right edges of a finger's
imprint. This step is performed after initial thresholding and
<p correction, described in Section 2.3. This produces vectors
of x coordinates for the left and right edges: X, and X, respec-
tively and similarly y coordinates for the top and bottom
edges. Taking arithmetic mean values of these vectors will
give respective coordinates for the sides of a box roughly
approximating the shape of the finger's imprint.
[0110] An empirical formula, shown to provide a good
estimate of 8 is:

[0111] Geometrically this can be described as the length of
a diagonal of a rectangle approximating the finger's imprint
normalized by the value of the area feature. This equation
incorporates several essential details; linear approximation of
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(17)

the edges, usage of a diagonal length, and normalization by
Mo,o rather than widthxheight.
[0112] This formula has been shown experimentally to give
a good correlation with finger application angle 8 and could
be used as an empirical estimator of such. It is also scale-
invariant which is important due to anatomical size variations
of finger size between individuals.
[0113] 2.3 <p Correction
[0114] The shape-based algorithms for calculating 1jJ and 8
described in Sections 2.2.6 and 2.2.7 are sensitive to Euler's
angle <p of the finger's application due to the use of row and
colunm scanning to find the left, right, top, and bottom finger
edges. During these operations rows and colunms are defined
in a coordinate system in which projection of major axis a
finger distal phalanx to X-Y plane is parallel to Y axis. This is
illustrated by FIG. 8. The actual finger imprint could be
rotated in X-Y plane by arbitrary <p angle.
[0115] To use shape-based algorithms discussed in Sec-
tions 2.2.6 and 2.2.7, the <p angle is calculate first, and then
used to perform <p correction before calculating 1jJ and 8.
Equation 23 shows the correction operation-a transforma-
tion of vector F containing coordinates of a frame's pixels to
F<I> by using rotation matrix, effectively rotating them by angle
<p about the origin the coordinate system.

(18)

(19)

[

COS ¢ -sin¢ 1
F¢ = F

sin¢ cos¢

(23)

(21)

(20)

[0116] FIG. 9 demonstrates the results of <p correction.
[0117] It is also possible to implement another, more
sophisticated algorithm, combining rotation with edge detec-
tion to minimize errors caused by the discrete nature of pixel
coordinates.
[0118] The effect of <p correction on left and right edge
detection is shown at FIG. 10. The dashed lines show curves,
approximating uncorrected left end right edges, while the
solid lines show ones calculated after <p correction. The curves
in general are different, so without <p correction, incorrect 1jJ
and 8 values will be calculated using shape-based approaches
described in Sections 2.2.6 and 2.2.7.
[0119] 2.4 Signal Processing
[0120] A temporal sequence of feature vectors could be
viewed as a set of pseudo-continuous signals. Some of these
signals could be used as control inputs to control software
applications or hardware (see Section 4.2) by varying finger
posture and position on the touch surface.
[0121] Some signals could benefit from several optional
processing steps, such as applying filters, described below.
[0122] When a human finger touches the sensor surface, it
deforms. Some signals, such as Euler's angles could not be
reliably calculated during this initial deformation. This could
be addressed by using a dampening filter. This filter ignores
frames for time td following initial finger contact with the
sensor surface. To avoid filter activation due to noisy sensor
readings, it is activated only if finger touch is detected after an
absence for a certain minimal period of time tn'
[0123] FIG. 11 illustrates a representative dampening filter
operation. M, 0 is used to detect whenever a finger is touching
the surface. I~ the depicted example, the finger is removed
from the surface at to and re-applied at t1. Since the duration
of finger absence (t1-tO) tn the dampening filter is activated,

(22)
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suppressing output of unreliable calculations of <p, 1jJ, and 8
signals td, until t2. The dashed line shows suppressed signals
values.
[0124] A signal's random noise could be attenuated by
using a low-pass filter. A causal filter approach is used to
estimate the value of a signal at a given point in time using
locally weighted scatterplot smoothing (LOWESS)[3] model
applied to ws prior values. These values are called smoothing
window. Such filter is used for smoothing finger posture-
related signals such as Euler's angles. Smoothing of finger
position signals is discussed in Section 2.4.1.
[0125] 2.4.1 Estimating Finger Position
[0126] A touchpad or touchscreen are examples of a com-
mon use of touch surface where the user controls applications
by changing the position of their finger on the surface. In
software applications, the position of the finger is expressed
as 2D coordinates in X -Y plane. A finger position estimation
problem is calculating such 2D coordinates representing fin-
ger position in a frame.
[0127] As mentioned in Section 2.2.3, centroids can be
used to estimate finge~p~sition. An argument for choosing
between (cy, cy) and (x, y) for different types of sensors is
provided in Section 4.1.
[0128] Regardless of which centroid is used, the presence
of random signal noise could cause jittery cursor movement
when finger position is used to control the cursor. For centroid
signals, a multivariate Kalman filter [10] is used as its empiri-
cal performance is better than that of a local linear regression
for this application. FIG. 12 shows a representative finger
centroid trajectory on a touch surface, with the dotted line
showing the original value, and the solid line a value
smoothed by the Kalman filter.
[0129] One of the effects of smoothing with a causal filter is
that after the finger has been removed from the sensor while
there are at least 2 previous signal values in the smoothing
window, it would continue to estimate "phantom" values of
those signals. For example, at a rate of 100 frames per second
with a 30 frame smoothing window size, the causal LOWESS
smoothing filter will produce signal values for 280 ms after
the finger has been removed. This effect could noticeable to
the user. To avoid this, an instant cut-off feature is introduced.
It prevents the use of the LOWESS smoother if finger pres-
ence is not detected in the current frame (the area signal is 0).
[0130] 3 Gesture Recognition
[0131] Extracted temporal sequence of feature vectors
could be used to recognize a set of predefined gestures, per-
formed by changing finger posture and position on a touch
surface. The gesture recognition module processes a stream
of feature vectors (in real time) and attempts to recognize a
gesture presence and boundaries.
[0132] A user can perform a variety of gestures. The most
basic gestures involve the variation of only a single parameter
of finger posture or position. The initial set of such basic
gestures could be:

[0133] Sway User changes x coordinate of finger posi-
tion (swiping the finger left to right or right to left).

[0134] Surge User changes y coordinate of finger posi-
tion (swiping the finger towards or away from the body).

[0135] Heave User changes i (varying the pressure,
applied by the finger to the touchpad).

[0136] Yaw User changes <p, varying corresponding
angle, as shown on FIG. 3.

[0137] Roll User changes 1jJ, varying corresponding
angle, as shown on FIG. 4.
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[0138] Pitch User changes 8 signal, varying correspond-
ing angle, as shown on FIG. 7.

[0139] The feasibility of recognition of posture-indepen-
dent gestures such as surge, sway and to a small extend heave
(i.e. finger taps) has been proven and recognition of such
gestures have been incorporated into existing products such
as Apple MacOS. However recognition of gestures involving
variations of 3D finger posture such as yaw, roll and pitch
remains relatively unstudied at the time of writing this article
with exception of work by NRI [29, 19,25,47,46,38,37].
[0140] A gesture recognition problem could be viewed as a
pattern recognition problem sometimes referred to as
sequence labeling [32], and commonly studied in the field of
speech recognition. It has been formulated as:
[0141] "In sequence labeling problems, the output is a
sequence of labels y=(y', y1 which corresponds to an
observation sequence x=(x', , x"). If each individual label
can take value from set E, then the structured output problem
can be considered as a multiclass classification problem with
I~ITdifferent classes."
[0142] Representing each gesture as two directional labels
produces the following initial set of gesture labels ~o:

.Lo = {yaw1eft, yawrighf' rollleft, rol!right. pitch1ejf' pitchright} (24)

[0143] To represent a situation where no gesture is present,
an additional null label, denoted by symbol D is introduced,
producing the final set oflabels ~:

~>{Lo,D} (25)

[0144] Each frame (at time t) could be represented by a
feature vector, for example:

S, = {Mo.o, l, x, y, x, y, e1, e2, ¢, e, i/I) (26)

[0145] A sliding window approach to real-time sequence
labeling is used, where the classification of a sample at time t
is made based on wd current and previous samples (s., St-1, .
.. , s,-(wa 1)). The value wd is called gesture recognition
window size. This window size is selected experimentally,
based on several factors such as sampling rate and average
gesture duration.
[0146] The input of the classifier at time t is the concatena-
tion of wd most recent feature vectors:

(27)

[0147] The output of the classifier a label from the set E.
[0148] 3.1 Artificial Neural Network Classifier
[0149] Although other approaches could be employed,
some of which are discussed in Section 5, in this section the
example of an Artificial Neural Network (ANN) classifier
will be used to assign the labels. Alternate classifier imple-
mentations are possible (for example [34]) and these are
provided for by the invention.
[0150] In general the classifier will have Ixtl inputs and I~oI
outputs. The input of the classifier is vector x, (see equation
24).
[0151] Based on this vector oflabel probabilities, a single
label is selected by applying accept and reject thresholds: the
label with maximal threshold is chosen if its probability is
above the acceptance threshold and all other label probabili-
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ties are below the rejection threshold. This classification
approach is sometimes called "one-of-n with confidence
thresholds"[ 40]. If no label passes the threshold test the null
label (D) is assigned.
[0152] In an example implementation a simple feed-for-
ward ANN with two hidden layers using the tanh activation
function is used. The ANN output layer uses the logistic
activation function, so as to produce outputs in [0, 1] interval,
convenient for probabilistic interpretation. For training, a
variation [9] of the Rprop learning algorithm is used.
[0153] Under certain conditions some features could not be
calculated. In this case the invention provides for some imple-
mentations to employ a special NULL symbol, indicating a
missing value in place of the feature value in the feature
vector. An ANN could not handle such input values, and they
have to be handled outside of ANN classification logic. Two
"missing value" cases could be distinguished and separately
handled:
[0154] 1. If within a given window a feature is NULL for all
frames; do not send these windows to the ANN classifier and
assume that no gesture is present, assigning null label.
[0155] 2. If within a given window for a feature some values
are NULL; try to interpolate those missing values by replac-
ing them with the mean value for the respective feature across
the window.
[0156] 3.2 Principal Component Analysis
[0157] All the features discussed in Section 2.2 correspond
to geometric features of the finger's 3D posture and 2D posi-
tion such as Euler's angles, finger position, etc. However,
higher order moments can also be used as abstract quantities
in gesture recognition. Since it is difficult to predict a. priory
the usefulness of different features in classification decisions,
one approach is to feed as much information as possible to an
ANN classifier and let it decode (brute force approach).
Unfortunately, it has been shown that increasing ANN inputs
above a certain number can actually cause a degradation of
the performance of the ANN classifier [1]. Also, such an
increase has a noticeable impact on training time and required
CPU resources. The number of ANN cells and required
amount of training data grows exponentially with dimension-
ality of the input space [1]. This is a manifestation of an effect
that is sometimes referred to as "the curse of dimensionality."
[0158] To address this problem, one can employ a dimen-
sionality reduction technique such as a Principal Component
Analysis (PCA). PCA can be defined as "an orthogonal pro-
jection of the data into a lower-dimensional linear space,
known as principal subspace, such that the variance of the
projected data is minimized." [2]
[0159] A PCA operation is applied to an extended feature
vector which, in addition to those features defined in s, (see
equation 26), include additional abstract moments. An
example feature vector that can be used as PCA input is:

Spca = ft, X,)I, x, y, Mo,o, MO,l, M1,Q, Mo,o, MO,l'

M1•0, Pl.l' P2•0, PO•2' P2.l' P1•2, P2•2, el, e2, ¢, e, I/I}

[0160] Each feature in the feature vector is scaled to have
unit variance and shifter so as to be mean centered. The PCA
operation comprises a linear transformation which, when
applied to Spea, produces a list of i, each corresponding to
dimension in a new space. Components are ordered by
decreasing variance. Some of the components which have
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standard deviations significantly lower than the first compo-
nent could be omitted from the input provided to the ANN. It
is noted that a manually set variance threshold can be used.
Alternatively, a threshold selection procedure could be auto-
mated by training the ANN and measuring how various
thresholds affect the miss rate.
[0161] Assuming that the original data has N intrinsic
degrees of freedom, represented by M features with M>N,
and some of the original features are linear combinations of
others, the PCA will allow a decrease in the number of dimen-
sions by orthogonally projecting original data points to a new,
lower-dimension space while minimizing an error caused by
dimensionality decrease.
[0162] The PCA parameters and transformation are calcu-
lated offline prior to use, based on a sample dataset of feature
vectors calculated from representative sequence of pre-re-
corded frames. The parameters consist of: a vector of scaling
factors P, (to scale values to have unit variance), a vector of
offsets Po (to shift values to be mean centered) and transfor-
mation matrix Pt.
[0163] During ANN training and ANN-based gesture rec-
ognition, these three parameters are used to convert the fea-
ture vector Spea into a vector of principal components ct:

(29)

[0164] An ANN classifier is used as described in Section
3.1, but instead of x" a vector rt (see Equation 30) is used as
input:

(30)

(28)

[0165] 3.3 Gesture Recognition Module Architecture
[0166] An example architecture for a gesture recognition
module 1300 [48] is shown in FIG. 13. The input of the
module 1301 is a vector offeatures Spca, which is the output
of the feature extraction module, shown on FIG. 2. A PCA
transformation is applied to this vector, resulting in c, 1302. A
last wd values 1303 of c, are accumulated in a recognition
window. The content of this window is then concatenated into
a long vector rt 1306 which is submitted as input of ANN. The
output of ANN 1308 is a vector of label probabilities. It is
interpreted by the label assigning module, which decides
what label to assign to the current frame. The assigned label
1309 is one of the outputs of the gesture recognition module.
[0167] Parallel to the "label" data flow depicted in the upper
portion of FIG. 13, the same features represented by the input
vector spea 1301 can also be used to obtain smoothed signals
responsive representing parameters of finger position and
posture. A subset s, of values from input vector spea 1301 is
split into two vectors: vector of spatial coordinates of the
centroid 1304 and the vector of remaining features from St.

The centroid is smoothed using the Kalman filter, resulting in
a vector of smoothed centroid coordinates 1305. Other fea-
tures are smoothed using LOWESS based on ws last feature
vectors, accumulated in the smoothing window. These
smoothed signals are concatenated back with the vector of
smoothed centroid coordinates 1305 to produce a vector 1307
which contains a smoothed version of St. This vector is also an
output of this module 1310.
[0168] 4 Example Implementations
[0169] As an example of ANN Classifier training, one can
record a dataset of frames from a touch-sensitive array col-
lected while users perform various gestures. Labeling
descriptions can be manually or automatically transcribed for
each frame recording an expected gesture label. Using estab-
lished cross-validation techniques, the dataset can addition-
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ally be partitioned into training and validation sets. The first
can be used for training ANN classifier and the second can be
used to measure the performance of trained ANN classifier.
[0170] Such a classifier can be implemented, for example,
in c++ using FANN [33] library. The performance of a
trained ANN classifier can be sufficient to perform gesture
recognition in real-time on a regular consumer-level PC at a
tactile sensor frame capture rate of 100 FPS.
[0171] A gesture recognition with a miss rate below 1 per-
cent as measured on validation data set can be readily be
obtained.
[0172] 4.1 Tactile Sensing Hardware
[0173] There are a variety of types of tactile sensors, for
example pressure-based, capacitive and optical. In various
embodiments, each has individual advantages and chal-
lenges.
[0174] 4.1.1 Pressure Sensor
[0175] An example pressure sensor array, for example as
manufactured by 'Iekscan, comprises an array of 44-by-44
presurre-sensing "pixels," each able to report 256 pressure
gradations. Although the maximum supported frame sam-
pling rate can be 100 FPS, it can be shown that the algorithms
presented as part of the invention work at rates as low as 50
FPS without significant loss of performance. This is impor-
tant as lower frame rates require less CPU resources.
[01~]_ A finger position on this sensor could be estimated
by (x, y). H~w~ver due to the slightly asymmetrical shape of
the finger, (x, y) are shown to better represent the perceived
contact point of the finger.
[0177] This particular senor posed several challenges: mea-
surements can be noisy, and the sensor can have defective
pixels. Moderate levels of noise does not prove to be a sig-
nificant problem as the algorithms described are tolerant to a
small amount of random errors in input data.
[0178] The problem with defective pixels can be much
more significant. FIG. 14 shows an example of the frame for
a sample finger application. In this example, one of the pixels
(marked with an arrow) consistently provides a pressure
value significantly higher than neighboring pixels.
[0179] During normal touch-sensitive surface use, different
pixels are loaded at different times with different pressures.
Over time statistics can be collected for each pixel, on distri-
bution of discrete pressure values reported by this particular
pixel during an observation period. Such a statistic can be
represented as a histogram of pixel value distribution for a
given pixel over time.
[0180] For a perfectly calibrated sensor array without
defective pixels such a histogram should be very similar for
all pixels, given the same pressure application patterns. How-
ever, under typical use applications patterns differ depending
on pixel location within an array. Because of that, histograms
for pixels located in different parts of the touchpad will differ.
However, sufficiently nearby pixels should have similar his-
tograms. This assumption allows the detection of anomalous
pixels as those which have histograms which are significantly
different from their neighbors. FIG. 15 shows pressure distri-
bution histograms based on statistics collected over time for
an anomalous pixel with coordinates (14, 33) and its imme-
diate neighbors, and also shows the pressure value distribu-
tions for the anomalous pixel and for its immediate neighbors.
[0181] Accumulating statistics of value distribution for
each pixel over time and comparing each pixel to its neigh-
bors allows identification of pixel outliers (for example using
Chauvenet's criterion).
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[0182] FIG. 16 shows for every pixel a Mean Squared Error
between its own pressure distribution histogram and the pres-
sure distribution histograms of its neighbors. The measure-
ments provided for several pixels behave significantly differ-
ent and these pixels are considered anomalous.
[0183] Once identified, such defective pixels could be dealt
with in different ways. In an embodiment, these can be treated
in calculations as missing values, effectively ignoring them.
Another approach is to estimate or interpolate correct their
values based on accumulated statistics or other information.
[0184] Statistical data used in this algorithm could be col-
lected during normal sensor usage. This permits the detection
of anomalous pixels and accommodates for their presence in
a manner completely transparent to the user.
[0185] 4.1.2 High Resolution Optical Touch Sensor
[0186] FIG. 17 depicts a camera-based optical sensor.
Although in some implementations such an arrangement can
be somewhat physically large, this arrangement easily and
inexpensively allows acquisition of high resolution touch
data and implements optical user interface sensing. In is noted
that NRI has developed technology making use of the light
sensing properties of OLED (Organic Light Emitting Diode)
displays and OLED transparent overlays as a high resolution
optical sensing touch screen [23].
[0187] The camera-based optical sensor can, for example,
comprise an upwards-facing video camera directed to view
the nnderside of a transparent touch surface that may be fitted
with an aperture bezel, and a circular light source. Such an
arrangement can be adjusted so as to minimize internal reflec-
tions and the effects of ambient light. In an example imple-
mentation, considerable degrees of down-sampling can be
employed. For example, a camera capable of capturing 8-bit
greyscale images with 640x480 pixels resolution can be
readily down-sampled to create a lower resolution (for
example 64x48). In an example implementation, an adapta-
tion of a simple box filter can be used to implement such
down-sampling operations, as can other arrangements such as
image signal decimation
[0188] Although an internal sensor's circular light ideally
provide provides even lighting from all directions, variations
can still be expected. Additionally ambient light could reflect
from the user's finger, causing the finger to be unevenly
lighted.
[0189] In order to com£_en~ate for nneven lighting, (x, y)
can be used instead of (x, y) to represent finger position.
Further, shape-based algorithms used for 1jJ and 8 calculation
demonstrate strong tolerance to uneven lighting conditions.
[0190] The area of the finger touching the sensor has a
near-homogenous luminance profile with very minor varia-
tion across pixels. This is different from pressure-based sen-
sors where noticeable pressure variation is measured within
the finger contact area.
[0191] Because an optical sensor has a depth of field in
addition to part of finger touching the surface, such a sensor is
capable of registering a part of the finger not in physical
contact with the surface. Not surprisingly, it can be experi-
mentally confirmed that a large depth of field introduces a
large amount of irrelevant information: for example, it could
register other fingers or parts of the palm.
[0192] Unlike a pressure sensor, the optical sensor requires
an additional segmentation step to separate finger imprint
from the background. This could be accomplished employing
a simple thresholding operation. All pixels with values above
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this threshold belong to finger imprint while remaining ones
are considered to be part of background and are suppressed by
setting their value to zero.
[0193] The optimal threshold value can depend upon ambi-
ent lighting conditions. Accordingly, a simple calibration pro-
cedure to find a threshold value wherein prior to each usage
session, or whenever ambient lighting conditions change, the
user is asked to put a finger on the sensor and a calibration
frame is recorded.
[0194] Otsu's method [36] can then be used to find a thresh-
old value based on this calibration frame. This method finds
the optimal threshold value by minimizing intra-class vari-
ance between two classes: the finger imprint and the back-
ground. This threshold value is then used in threshold filter
during the frame pre-processing step.
[0195] 4.2 Example Applications
[0196] As an example of a rich gesture human interface, of
the 3D gestures described above can be used to control: office
applications (Microsoft Word, Excel), 3D applications
(Google Earth, games), scientific applications (Wolfram
Mathematica) and robotics applications (a robot arm). These
and a large number of other applications have been explored
by NRI [12-17, 20, 22, 24, 26, 28].
[0197] The architecture of an example representative con-
trol system is shown in FIG. 18. The inputs of this subsystem
are gesture label and smoothed signals from a gesture recog-
nition module such as that depicted in FIG. 13.
[0198] These inputs are processed by an event generation
module which converts them to events, used to control appli-
cations. Specialized applications naturally accepting 3D
inputs, (such as Google Earth, Wolfram Mathematica, video
games, etc.) can readily be controlled for example employing
a USB (Universal Serial Bus) HID (Human Interface Device)
arrangement. This can accomplished via an OS-level driver
which presents a gesture controller as a USB HID [30] periph-
eral, which such applications are capable of recognizing and
using as input controls.
[0199] To control more standard office applications, which
only naturally are configured to respond to mouse and key-
board commands, an application control ("App Control")
module can be implemented. Such a module can, for
example, detects what application is currently active (in the
foreground of a windowing system) and, if support arrange-
ments are available, controls that application via a custom
"adapter". Such custom adapters (for interfaceing with
Microsoft Office applications, for example) map gesture
events to user interface actions such as resizing spreadsheet
cells or changing document fonts using COM interface. The
mapping is configurable via simple user interface.
[0200] The final example application presented here is the
control of a robot arm. A OWl Robotic Arm [11], is shown in
FIG. 19, although a similar older model (OWl Robotic Arm
Trainer) provides a wrist rotation capability. Each type of
robot arm provided a different set of control metaphor oppor-
tunities.
[0201] For each application setting, 3D gesture events are
mapped to the movement of joints in the robotic arm, con-
trolled via USB protocol [45]. The mapping of gestures to
joints is configurable, but the general idea is that once one of
yaw, roll, or pitch gestures is detected, a metaphorically-
associated joint is moved proportionally to the change of
appropriate signal (<jJ, 1jJ, or 8). To provide simple operation
during demonstrations, other signals are suppressed and only
one joint is moving at a time.
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[0202] 5 Additional Features Provided for by the Invention
[0203] There are several additional features provided for by
the invention. These can be grouped into three categories,
each briefly described below:
[0204] 5.1 Feature Extraction and Gesture Recognition
Improvements
[0205] The first category is related to further feature extrac-
tion and gesture recognition performance enhancements. For
example, the algorithms described above and elsewhere could
be extended to work with frames sampled at a variable rate.
Empirical formulae currently used for 8 and 1jJ detailed cal-
culation could be further refined, based on geometric proper-
ties and finger deformation models. AnANN Classifier could
use more advanced neural network types and topologies.
Other classifier improvements could include use of Ensemble
learning and Segmental Conditional Random Fields [35].
[0206] Various methods can be used to improve the decou-
pIing and isolation of 3D finger parameters. These include
nonlinear techniques [29], piecewise linear techniques [21],
and suppression/segmentation techniques [48, 46].
[0207] Extending to include multi-touch (detecting more
than one finger or other parts of the hand, such as the palm or
thumb) allows for the construction of more complex gestures.
For example, a gesture can be defined based on change over
time of finger posture parameters extracted independently
and simultaneously for each finger in contact with the touch-
pad.
[0208] High performance segmentation using Connected
Component Labeling with subsequent label merging employ-
ing a Hausdorff metric can provide good results. FIG. 20
shows original sensor data and the resulting two distinct
finger images separated from it using this operation.
[0209] 5.2 Hidden Markov Models
[0210] It has been previously suggested that Hidden
Markov models could be used for gesture recognition [44].
One current approach provided for by the invention is an
adaptation of one described in [41], but employing several,
significant modifications:
[0211] An important difference is the construction of a
multi-dimensional gesture space using the desired set offea-
tures, not just centroid position and velocity. Each feature is
represented by a space dimension. This approach provides
several advantages:

[0212] By treating feature vectors as coordinates in ges-
ture space, each gesture could be viewed as a trajectory
in this space.

[0213] Furthermore, given sample gesture data, proce-
dures can be used to partition the gesture space into a
plurality of clusters. This could be done, for example,
using a clustering algorithm such as K-means.

[0214] An example of a three dimensional gesture space
with gesture trajectory points clustered using Cosine Similar-
ity is shown in FIG. 21. Each gray-scale shade represents a
distinct assigned cluster grouping. An alternative visualiza-
tion of the same clusters using multivariate Gaussian repre-
sented as an ellipsoid based on a covariance matrix of eigen-
system and using 0.95 critical value of x2 (Chi-square)
distribution is shown at FIG. 22.
[0215] Representing gesture trajectory as a sequence of
transitions between pre-calculated clusters (effectively a "VQ
codebook") allows modeling as a wr order Markov Process
(where Wd is the gesture recognition window size). A set of
HMMs is trained per gesture using Baum- Welch procedure
[43]. A Viterbi algorithm [6] is used to recognize a gesture,
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matching the current observation sequence of state transitions
to a set of trained HMMs and in each finding a matching state
sequence with the highest probability.
[0216] 5.3 Gesture Grammars
[0217] Current touch-based user interfaces are clearly
evolving in the direction of more complex gestures, richer
metaphors and user interfaces specifically tailored for ges-
ture-only interaction. Examples of very early movement in
this direction can be ascribed to recent products from both
Apple (Apple 'Iouchpad, iPhone and iPad VI, and Apple
Mighty Mouse) and Microsoft (Microsoft Surface, Microsoft
Touch Mouse, and Microsoft Touch Pack for Windows 7).
However these offerings are extremely limited.
[0218] In particular, as gesture-based human-computer
interactions become more intricate with "gesture dictionar-
ies" already containing dozens of gestures, one can see an
emerging need for "gesture grammars". Such grammars will
provide a formal framework for defining and classifying as
well as verifying and recognizing a variety of gestures and
gesture sequences. General-purpose as well as domain-spe-
cific languages could be constructed and described using such
grammars. The development of gesture grammars is an inter-
disciplinary study involving linguistics, human-computer
interaction, machine vision, and computer science, as is seen
in NRI's earlier patent applications in relating to tactile and
more general gesture grammars [22, 25, 29, 31].
[0219] The terms "certain embodiments", "an embodi-
ment", "embodiment", "embodiments", "the embodiment",
"the embodiments", "one or more embodiments", "some
embodiments", and "one embodiment" mean one or more
(but not all) embodiments unless expressly specified other-
wise. The terms "including", "comprising", "having" and
variations thereof mean "including but not limited to", unless
expressly specified otherwise. The enumerated listing of
items does not imply that any or all of the items are mutually
exclusive, unless expressly specified otherwise. The terms
"a", "an" and "the" mean "one or more", unless expressly
specified otherwise.
[0220] The foregoing description, for purpose of explana-
tion, has been described with reference to specific embodi-
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the prin-
ciples of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated.
[0221] While the invention has been described in detail
with reference to disclosed embodiments, various modifica-
tions within the scope of the invention will be apparent to
those of ordinary skill in this technological field. It is to be
appreciated that features described with respect to one
embodiment typically can be applied to other embodiments.
[0222] The invention can be embodied in other specific
forms without departing from the spirit or essential charac-
teristics thereof. The present embodiments are therefore to be
considered in all respects as illustrative and not restrictive, the
scope of the invention being indicated by the appended claims
rather than by the foregoing description, and all changes
which come within the meaning and range of equivalency of
the claims are therefore intended to be embraced therein.
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[0223] Although exemplary embodiments have been pro-
vided in detail, various changes, substitutions and alterna-
tions could be made thereto without departing from spirit and
scope of the disclosed subject matter as defined by the
appended claims. Variations described for the embodiments
may be realized in any combination desirable for each par-
ticular application. Thus particular limitations and embodi-
ment enhancements described herein, which may have par-
ticular advantages to a particular application, need not be
used for all applications. Also, not all limitations need be
implemented in methods, systems, and apparatuses including
one or more concepts described with relation to the provided
embodiments. Therefore, the invention properly is to be con-
strued with reference to the claims.
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1.A system for 3D gesture recognition on touch surfaces,
the system comprising:
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a touch user interface device including a sensor array con-
figured to sense finger contact information associated
with one or more regions of contact providing the finger
contact information in the form of a stream of frame
data; and

a processing device in communication with the touch user
interface device configured to:
read frame data from the sensor array;
produce modified frame data by performing threshold-

ing and normalization operations on the frame data,
produce a features vector by extracting at least one fea-

ture from the modified frame data;
create a gesture trajectory in a multi-dimensional ges-

ture space wherein the multi-dimensional gesture
space comprises a plurality of feature vectors, and
wherein the gesture trajectory is a sequence of transi-
tions between regions of the multi-dimensional ges-
ture space;

detect a specific gesture; and
generate a control signal in response to the specific ges-

ture.
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2. The system of claim 1, wherein the processing device is
further configured to implement a principle component
analysis operation.

3. The system of claim 1, wherein the processing device is
further configured to implement a Kalman filter operation.

4. The system of claim 1, wherein the multi-dimensional
gesture space comprises a desired set of features, each feature
represented by an associated dimension in the gesture space.

5. The system of claim 1, wherein the extraction of at least
one feature further comprises high performance segmenta-
tion using Connected Component Labeling with subsequent
label merging employing a Hausdorff metric is used to imple-
ment multi-touch capabilities.

6. The system of claim 1, wherein the extraction of at least
one feature further comprises high performance segmenta-
tion with subsequent label merging employing a metric simi-
1ar to but differing from a Hausdorff metric is used to imple-
ment multi-touch capabilities.
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