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DISCRETE FRACTIONAL FOURIER
NUMERICAL ENVIRONMENTS FOR
COMPUTER MODELING OF IMAGE
PROPAGATION THROUGH A PHYSICAL
MEDIUM IN RESTORATION AND OTHER
APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of Reissue application
Ser. No. 12/101,878, filed Apr. 11, 2008 for U.S. Pat. No.
7,039,252 issued on May 2, 2006 (U.S. application Ser. No.
10/980,744 filed on Nov. 2, 2004, which is a continuation-in-
part of application Ser. No. 10/665,439, filed on Sep. 18,
2003, which is a continuation-in-part of application Ser. No.
09/512,775, filed on Feb. 25, 2000, now U.S. Pat. No. 6,687,
418 claiming priority to provisional application No. 60/121,
680 and to provisional application No. 60/121,958, both filed
on Feb. 25, 1999.). (i.e., a Bauman type continuation appli-
cation).

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to optical signal processing, and
more particularly to the use of fractional Fourier transform
properties of lenses to correct the effects of lens misfocus in
photographs, video, and other types of captured images.

2. Discussion of the Related Art

A number of references are cited herein; these are provided
in a numbered list at the end of the detailed description of the
preferred embodiments. These references are cited at various
locations throughout the specification using a reference num-
ber enclosed in square brackets.

The Fourier transforming properties of simple lenses and
related optical elements is well known and heavily used in a
branch of engineering known as Fourier optics [1,2]. Classi-
cal Fourier optics [1,2,3,4] utilize lenses or other means to
obtain a two-dimensional Fourier transform of an optical
wavefront, thus creating a Fourier plane at a particular spatial
location relative to an associated lens. This Fourier plane
includes an amplitude distribution of an original two-dimen-
sional optical image, which becomes the two-dimensional
Fourier transform of itself. In the far simpler area of classical
geometric optics [1,3], lenses and related objects are used to
change the magnification of a two-dimensional image
according to the geometric relationship of the classical lens-
law. It has been shown that between the geometries required
for classical Fourier optics and classical geometric optics, the
action of a lens or related object acts on the amplitude distri-
bution of images as the fractional power of the two-dimen-
sional Fourier transform. The fractional power of the frac-
tional Fourier transform is determined by the focal length
characteristics of the lens, and the relative spatial separation
between a lens, source image, and an observed image.

The fractional Fourier transform has been independently
discovered on various occasions over the years [5,7,8,9,10],
and is related to several types of mathematical objects such as
the Bargmann transform [8] and the Hermite semigroup [13].
As shownin [5], for example, the most general form of optical
properties of lenses and other related elements [1,2,3] can be
transformed into a fractional Fourier transform representa-
tion. This property has apparently been rediscovered some
years later and worked on steadily ever since (see for example
[6]), expanding the number of optical elements and situations
covered. It is important to remark, however, that the lens
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2

modeling approach in the latter ongoing series of papers view
the multiplicative phase term in the true form of the fractional
Fourier transform as a problem or annoyance and usually
omit it from consideration.

SUMMARY OF THE INVENTION

Correction of the effects of misfocusing in recorded or
real-time image data may be accomplished using fractional
Fourier transform operations realized optically, computation-
ally, or electronically. In some embodiments, the invention
extends the capabilities of using a power of the fractional
Fourier transform for correcting misfocused images, to situ-
ations where phase information associated with the original
image misfocus is unavailable. For example, conventional
photographic and electronic image capture, storage, and pro-
duction technologies can only capture and process image
amplitude information—the relative phase information cre-
ated within the original optical path is lost. As will be
described herein, the missing phase information can be recon-
structed and used when correcting image misfocus.

In accordance with embodiments of the invention, a
method for approximating the evolution of images propagat-
ing through a physical medium is provided by calculating a
fractional power of a numerical operator. The numerical
operator may be defined by the physical medium and includes
a diagonalizable numerical linear operator raised to a power
(). The method further includes representing a plurality of
images using an individual data array for each of the images.
The numerical operator may be represented with a linear
operator formed by multiplying an ordered similarity trans-
formation operator (P) by a correspondingly-ordered diago-
nal operator (A), the result of which is multiplied by an
approximate inverse (P~') of the ordered similarity transfor-
mation operator (P). Diagonal elements of the correspond-
ingly-ordered diagonal operator (A) may be raised to the
power () to produce a fractional power diagonal operator.
The fractional power diagonal operator may be multiplied by
an approximate inverse of the ordered similarity transforma-
tion operator (P~") to produce a first partial result. In addition,
the data array of one of the images may be multiplied by the
ordered similarity transformation operator (P) to produce a
modified data array. The modified data array may then be
multiplied by the first partial result to produce the fractional
power of the numerical operator. If desired, the last-two mul-
tiplication operations may be repeated for each of a plurality
of images.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of the
present invention will become more apparent upon consider-
ation of the following description of preferred embodiments
taken in conjunction with the accompanying drawing figures,
wherein:

FIG. 1 is a block diagram showing a general lens arrange-
ment and associated image observation entity capable of clas-
sical geometric optics, classical Fourier optics, and fractional
Fourier transform optics;

FIG. 2 is a block diagram showing an exemplary approach
for automated adjustment of fractional Fourier transform
parameters for maximizing the sharp edge content of a cor-
rected image, in accordance with one embodiment of the
present invention;

FIG. 3 is a block diagram showing a typical approach for
adjusting the fractional Fourier transform parameters to
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maximize misfocus correction of an image, in accordance
with one embodiment of the present invention;

FIG. 4 is a diagram showing a generalized optical environ-
ment for implementing image correction in accordance with
the present invention;

FIG. 5 is a diagram showing focused and unfocused image
planes in relationship to the optical environment depicted in
FIG. 4,

FIG. 6 is a block diagram showing an exemplary image
misfocus correction process that also provides phase correc-
tions;

FIG. 7 is a diagram showing a more detailed view of the
focused and unfocused image planes shown in FIG. 5;

FIG. 81s a diagram showing typical phase shifts involved in
the focused and unfocused image planes depicted in FIG. 5;

FIG. 9 shows techniques for computing phase correction
determined by the fractional Fourier transform applied to a
misfocused image;

FIG. 10 is a block diagram showing an exemplary image
misfocus correction process that also provides for phase cor-
rection, in accordance with an alternative embodiment of the
invention;

FIG. 11 shows a diagonalizable matrix, tensor, or linear
operator acting on an underlying vector, matrix, tensor, or
function;

FIG. 12 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through a
physical medium, in accordance with embodiments of the
invention;

FIG. 13 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through a
physical medium, in accordance with alternative embodi-
ments of the invention.

FIG. 14 shows a simplified version of the equation depicted
in FIG. 11;

FIG. 15 shows an exemplary matrix;

FIGS. 16A through 16C are side views of a propagating
light or particle beam;

FIG. 16D is a top view of contours of constant radial
displacement with respect to the image center of paths asso-
ciated with the image propagation of an image;

FIG. 17 shows an exemplary matrix for a centered normal-
ized classical discrete Fourier transform;

FIG. 18A is a graph showing a frequency-domain output of
a non-centered classical discrete Fourier transform for an
exemplary signal;

FIG. 18B is a graph showing a frequency-domain output of
a centered classical discrete Fourier transform for the same
exemplary signal;

FIG. 19 shows the coordinate indexing of an image having
a particular height and width; and

FIG. 20 is a block diagram showing the isolation and later
reassembly of quadrant portions of an original image.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following description, reference is made to the
accompanying drawing figures which form a part hereof, and
which show by way of illustration specific embodiments of
the invention. It is to be understood by those of ordinary skill
in this technological field that other embodiments may be
utilized, and structural, electrical, optical, as well as proce-
dural changes may be made without departing from the scope
of the present invention.

Asused herein, the term “image” refers to both still-images
(such as photographs, video frames, video stills, movie
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frames, and the like) and moving images (such as motion
video and movies). Many embodiments of the present inven-
tion are directed to processing recorded or real-time image
data provided by an exogenous system, means, or method.
Presented image data may be obtained from a suitable elec-
tronic display such as an LCD panel, CRT, LED array, films,
slides, illuminated photographs, and the like. Alternatively or
additionally, the presented image data may be the output of
some exogenous system such as an optical computer or inte-
grated optics device, to name a few. The presented image data
will also be referred to herein as the image source.

If desired, the system may output generated image data
having some amount of misfocus correction. Generated
image data may be presented to a person, sensor (such as a
CCD image sensor, photo-transistor array, for example), or
some exogenous system such as an optical computer, inte-
grated optics device, and the like. The entity receiving gen-
erated image data will be referred to as an observer, image
observation entity, or observation entity.

Reference will first be made to FIG. 3 which shows a
general approach for adjusting the fractional Fourier trans-
form parameters to maximize the correction of misfocus in an
image. Details regarding the use of a fractional Fourier trans-
form (with adjusted parameters of exponential power and
scale) to correct image misfocus will be later described with
regard to FIGS. 1 and 2.

Original visual scene 301 (or other image source) may be
observed by optical system 302 (such as a camera and lens
arrangement) to produce original image data 303a. In accor-
dance with some embodiments, optical system 302 may be
limited, misadjusted, or otherwise defective to the extent that
it introduces a degree of misfocus into the image represented
by the image data 303a4. It is typically not possible or practical
to correct this misfocus effect at optical system 302 to pro-
duce a better focused version of original image data 303a.
Misfocused original image data 303a may be stored over time
or transported over distance. During such a process, the origi-
nal image data may be transmitted, converted, compressed,
decompressed, or otherwise degraded, resulting in an identi-
cal or perturbed version of original image data 3035. It is this
perturbed version of the original image data that may be
improved using the misfocus correction techniques disclosed
herein. Original and perturbed image data 3034, 3035 may be
in the form of an electronic signal, data file, photography
paper, or other image form.

Original image data 3035 may be manipulated numeri-
cally, optically, or by other means to perform a fractional
Fourier transform operation 304 on the original image data to
produce resulting (modified) image data 305. The parameters
of exponential power and scale factors of the fractional Fou-
rier transform operation 304 may be adjusted 310 over some
range of values, and each parameter setting within this range
may result in a different version of resulting image data 305.
As the level of misfocus correction progresses, the resulting
image data 305 will appear more in focus. The improvement
in focus will generally be obvious to an attentive human
visual observer, and will typically be signified by an increase
in image sharpness, particularly at any edges that appear in
the image. Thus a human operator, a machine control system,
or a combination of each can compare a sequence of resulting
images created by previously selected parameter settings 310,
and try a new parameter setting for a yet another potential
improvement.

For a human operator, this typically would be a matter of
adjusting a control and comparing images side by side (facili-
tated by non-human memory) or, as in the case of a micro-
scope or telescope, by comparison facilitated purely with
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human memory. For a machine, a systematic iterative or other
feedback control scheme would typically be used.

In FIG. 3, each of these image adjustments is generalized
by the steps and elements suggested by interconnected ele-
ments 306-309, although other systems or methods accom-
plishing the same goal with different internal structure (for
example, an analog electronic circuit, optical materials, or
chemical process) are provided for and anticipated by the
present invention. For the illustrative general case of FIG. 3,
resulting image data 305 for selected parameter settings 310
may be stored in human, machine, or photographic memory
306, along with the associated parameter settings, and com-
pared 307 for the quality of image focus. Based on these
comparisons, subsequent high level actions 308 may be cho-
sen.

High level actions 308 typically require translation into
new parameter values and their realization, which may be
provided by parameter calculation and control 309. This pro-
cess may continue for some interval of time, some number of
resulting images 305, or some chosen or pre-determined
maximum level of improvement. One or more “best choice”
resulting image data set or sets 305 may then be identified as
the result of the action and processes depicted in this figure.

With this high level description having been established,
attention is now directed to details of the properties and use of
a fractional Fourier transform (with adjusted parameters of
exponential power and scale) to correct misfocus in an image
and maximize correction of misfocus. This aspect of the
present invention will be described with regard to FIG. 1.

FIG. 1 is a block diagram showing image source 101, lens
102, and image observation entity 103. The term “lens” is
used herein for convenience, but it is to be understood that the
image misfocus correction techniques disclosed herein apply
equally to lens systems and other similar optical environ-
ments. The image observation entity may be configured with
classical geometric optics, classical Fourier optics, or frac-
tional Fourier transform optics. The particular class of optics
(geometric, Fourier, or fractional Fourier) implemented in a
certain application may be determined using any of the fol-
lowing:

separation distances 111 and 112;

the “focal length” parameter “f”” of lens 102;

the type of image source (lit object, projection screen, etc.)

in as far as whether a plane or spherical wave is emitted.

As is well known, in situations where the source image is a
lit object and where distance 111, which shall be called “a,”
and distance 112, which shall be called “b,” fall into the
lens-law relationship, may be determined by the focal length

M

I

Q1=
+

S

<l

f:

which gives the geometric optics case. In this case, observed
image 103 is a vertically and horizontally inverted version of
the original image from source 101, scaled in size by a mag-
nification factor m given by:

@

ISR

As previously noted, the Fourier transforming properties of
simple lenses and related optical elements is also well known
in the field of Fourier optics [2,3]. Classical Fourier optics
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[2,3,4,5] involve the use of a lens, for example, to take a first
two-dimensional Fourier transform of an optical wavetront,
thus creating a Fourier plane at a particular spatial location
such that the amplitude distribution of an original two-dimen-
sional optical image becomes the two-dimensional Fourier
transform of itself. In the arrangement depicted in FIG. 1,
with a lit object serving as source image 101, the Fourier
optics case may be obtained when a=b=f.

As described in [5], for cases where a, b, and f do not satisty
the lens law of the Fourier optics condition above, the ampli-
tude distribution of source image 101, as observed at obser-
vation entity 103, experiences the action of a non-integer
power of the Fourier transform operator. As described in [5],
this power, which shall be called o, varies between 0 and 2
and is determined by an Arc-Cosine function dependent on
the lens focal length and the distances between the lens,
image source, and image observer; specifically:

Vii-af-b ®

!

2
a = —arccos|sgn(f —a)
7

for cases where (f-a) and (f-b) share the same sign. There are
other cases which can be solved from the more primitive
equations in [5] (at the bottom of pages ThE4-3 and ThE4-1).
Note simple substitutions show that the lens law relationship
among a, b, and f indeed give a power of 2, and that the Fourier
optics condition of a=b=f give the power of 1, as required.

The fractional Fourier transform properties of lenses typi-
cally cause complex but predictable phase and scale varia-
tions. These variations may be expressed in terms of Hermite
functions, as presented shortly, but it is understood that other
representations of the effects, such as closed-form integral
representations given in [5], are also possible and useful.

Various methods can be used to construct the fractional
Fourier transform, but to begin it is illustrative to use the
orthogonal Hermite functions, which as eigenfunctions
diagonalize the Fourier transform [17]. Consider the Hermite
function [16] expansion [17, and more recently, 18] of the two
dimensional image amplitude distribution function. In one
dimension, a bounded (i.e., non-infinite) function k(x) can be
represented as an infinite sum of Hermite functions {h (x)}
as:

S @
k) = ) auln ()

n=0

Since the function is bounded, the coefficients {a,} even-
tually become smaller and converge to zero. An image may be
treated as a two dimensional entity (for example, a two-
dimensional array of pixels), or it can be the amplitude varia-
tion of a translucent plate; in either case, the function may be
represented in a two-dimensional expansion such as:

S ®
ke, x2) = > a1 n(62)

0 n=0

For simplicity, the one dimensional case may be considered.
The Fourier transform action on Hermite expansion of the
function k(x) with series coefficients {a,} is given by [16]:



US 8,094,969 B2

& ©
FIRGT = Y (=i aphy ()

n=0

Because of the diagonal eigenfunction structure, fractional
powers of the Fourier transform operator may be obtained by
taking the fractional power of each eigenfunction coefficient.
The eigenfunction coefficients here are (-i)”. Complex
branching artifact ambiguities that arise from taking the roots
of complex numbers can be avoided by writing (-i) as:

e—i’n:/2

M
Thus for a given power a, the fractional Fourier transform of

the Hermite expansion of the function k(x) with series coef-
ficients {a,}can be given by [5]:

= ®
Folk(] = " ™2, (x)

n=0

Note when a=1, the result is the traditional Fourier transform
above, and when a=2, the result may be expressed as:

id 9
FAk@] = " e a,h,(x) ®

3
=3

D18

(=1)aphn(%)

I
=3

n

=3 -
n=0

=k(—x)

due to the odd and even symmetry, respectively, of the odd
and even Hermite functions. This is the case for the horizon-
tally and vertically inverted image associated with the lens
law of geometric optics, although here the scale factors deter-
mining the magnification factor have been normalized out.

More generally, as the power o varies (via the Arccosine
relationship depending on the separation distance), the phase
angle of the n™ coefficient of the Hermite expansion varies
according to the relationship shown above and the scale factor
may vary as well [5]. For images, all of the above occurs in the
same manner but in two dimensions [5].

Through use of the Mehler kernel [16], the above expan-
sion may be represented in closed form as [5]:

FoTk(x)] = (10)

e—Taif2 o [ X +y? o Fied ]
—isin(nw/Z) j::k(x)e (—2 ]cot(j) —xycsc(T) dx

Note in [5] that the factor of i multiplying the sin function
under the radical has been erroneously omitted. Clearly, both
the Hermite and integral representations are periodic in o
with period four. Further, it can be seen from either represen-
tation that:

F2 [k =F2F = [k(5)]=FF> k() ]=F*< [k(~x)] an

which illustrates an aspect of the invention as the effect ¢ will
be the degree of misfocus introduced by the misfocused lens,
while the Fourier transform raised to the second power rep-
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resents the lens-law optics case. In particular, the group prop-
erty makes it possible to calculate the inverse operation to the
effect induced on a record image by a misfocused lens in
terms of explicit mathematical operations that can be realized
either computationally, by means of an optical system, or
both. Specifically, because the group has period 4, it follows
that F~2=F2; thus:

FE FE
E=< ) =F2F ekl F k)=

+E +E
F el F o efi(-x)] 12

Thus, one aspect of the invention provides image misfocus
correction, where the misfocused image had been created by
a quality though misfocused lens or lens-system. This misfo-
cus can be corrected by applying a fractional Fourier trans-
form operation; and more specifically, if the lens is misfo-
cused by an amount corresponding to the fractional Fourier
transform of power €, the misfocus may be corrected by
applying a fractional Fourier transform operation of power
-€.

It is understood that in some types of situations, spatial
scale factors of the image may need to be adjusted in con-
junction with the fractional Fourier transform power. For
small variations of the fractional Fourier transform power
associated with a slight misfocus, this is unlikely to be nec-
essary. However, should spatial scaling need to be made,
various optical and signal processing methods well known to
those skilled in the art can be incorporated. In the case of
pixilated images (images generated by digital cameras, for
example) or lined-images (generated by video-based sys-
tems, for example), numerical signal processing operations
may require standard resampling (interpolation and/or deci-
mation) as is well known to those familiar with standard
signal processing techniques.

It is likely that the value of power ¢ is unknown a priori. In
this particular circumstance, the power of the correcting frac-
tional Fourier transform operation may be varied until the
resulting image is optimally sharpened. This variation could
be done by human interaction, as with conventional human
interaction of lens focus adjustments on a camera or micro-
scope, for example.

If desired, this variation could be automated using, for
example, some sort of detector in an overall negative feed-
back situation. In particular, it is noted that a function with
sharp edges are obtained only when its contributing,
smoothly-shaped basis functions have very particular phase
adjustments, and perturbations of these phase relationships
rapidly smooth and disperse the sharpness of the edges. Most
natural images contain some non-zero content of sharp edges,
and further it would be quite unlikely that a naturally occur-
ring, smooth gradient would tighten into a sharp edge under
the action of the fractional Fourier transform because of the
extraordinary basis phase relationships required. This sug-
gests that a spatial high-pass filter, differentiator, or other
edge detector could be used as part of the sensor makeup. In
particular, an automatically adjusting system may be config-
ured to adjust the fractional Fourier transform power to maxi-
mize the sharp edge content of the resulting correcting image.
If desired, such a system may also be configured with human
override capabilities to facilitate pathological image situa-
tions, for example.

FIG. 2 shows an automated approach for adjusting the
fractional Fourier transform parameters of exponential power
and scale factor to maximize the sharp edge content of the
resulting correcting image. In this figure, original image data
201 is presented to an adjustable fractional Fourier transform
element 202, which may be realized physically via optical
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processes or numerically (using an image processing or com-
putation system, for example). The power and scale factors of
the fractional Fourier transform may be set and adjusted 203
as necessary under the control of a step direction and size
control element 204.
Typically, this element would initially set the power to the
ideal value of zero (making the resulting image data 205
equivalent to the original image data 201) or two (making the
resulting image data 205 equivalent to an inverted image of
original image data 201), and then deviate slightly in either
direction from this initial value. The resulting image data 205
may be presented to edge detector 206 which identifies edges,
via differentiation or other means, whose sharpness passes a
specified fixed or adaptive threshold. The identified edge
information may be passed to an edge percentage tally ele-
ment 207, which transforms this information into a scalar-
valued measure of the relative degree of the amount of edges,
using this as a measure of image sharpness.
The scalar measure value for each fractional Fourier trans-
form power may be stored in memory 208, and presented to
step direction and size control element 204. The step direction
and size control element compares this value with the infor-
mation stored in memory 208 and adjusts the choice of the
next value of fractional Fourier transform power accordingly.
In some implementations, the step direction and size control
element may also control edge detection parameters, such as
the sharpness threshold of edge detector element 207. When
the optimal adjustment is determined, image data 205 asso-
ciated with the optimal fractional Fourier transform power is
designated as the corrected image.
It is understood that the above system amounts to a nega-
tive-feedback control or adaptive control system with a fixed
or adaptive observer. As such, it is understood that alternate
means of realizing this automated adjustment can be applied
by those skilled in the art. It is also clear to one skilled in the
art that various means of interactive human intervention may
be introduced into this automatic system to handle problem
cases or as a full replacement for the automated system.
In general, the corrective fractional Fourier transform
operation can be accomplished by any one or combination of
optical, numerical computer, or digital signal processing
methods as known to those familiar with the art, recognizing
yet other methods may also be possible. Optical methods may
give effectively exact implementations of the fractional Fou-
rier transforms, or in some instances, approximate implemen-
tations of the transforms. For a pixilated image, numerical or
other signal processing methods may give exact implemen-
tations through use of the discrete version of the fractional
Fourier transform [10].
Additional computation methods that are possible include
one or more of:
dropping the leading scalar complex-valued phase term
(which typically has little or no effect on the image);

decomposing the fractional Fourier transform as a pre-
multiplication by a “phase chirp” ¢*2, taking a conven-
tional Fourier transform with appropriately scaled vari-
ables, and multiplying the result by another “phase
chirp;” and

changing coordinate systems to Wigner form:

a3

{(x+y)’ (x—y)}

w w
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If desired, any of these just-described computation methods
can be used with the approximating methods described
below.

Other embodiments provide approximation methods for
realizing the corrective fractional Fourier transform opera-
tion. For a non-pixilated image, numerical or other signal
processing methods can give approximations through:

finite-order discrete approximations of the integral repre-
sentation;

finite-term discrete approximations by means of the Her-
mite expansion representation; and

the discrete version of the fractional Fourier transform
[10].
Classical approximation methods [11,12] may be used in
the latter two cases to accommodate particular engineering,
quality, or cost considerations.

In the case of Hermite expansions, the number of included
terms may be determined by analyzing the Hermite expan-
sion of the image data, should this be tractable. In general,
there will be some value in situations where the Hermite
function expansion ofthe image looses amplitude as the order
of the Hermite functions increases. Hermite function orders
with zero or near-zero amplitudes may be neglected entirely
from the fractional Fourier computation due to the eigenfunc-
tion role of the Hermite functions in the fractional Fourier
transform operator.

One method for realizing finite-order discrete approxima-
tions of the integral representation would be to employ a
localized perturbation or Taylor series expansion of the inte-
gral representation. In principal, this approach typically
requires some mathematical care in order for the operator to
act as a reflection operator (i.e., inversion of each horizontal
direction and vertical direction as with the lens law) since the
kernel behaves as a generalized function (delta function), and
hence the integral representation of the fractional Fourier
transform operator resembles a singular integral.

In a compound lens or other composite optical system, the
reflection operator may be replaced with the identity operator,
which also involves virtually identical delta functions and
singular integrals as is known to those familiar in the art.
However, this situation is fairly easy to handle as a first or
second-order Taylor series expansion. The required first, sec-
ond, and any higher-order derivatives of the fractional Fourier
transform integral operator are readily and accurately
obtained symbolically using available mathematical software
programs, such as Mathematica or MathLab, with symbolic
differential calculus capabilities. In most cases, the zero-
order term in the expansion will be the simple reflection or
identity operator. The resulting expansion may then be
numerically approximated using conventional methods.

Another method for realizing finite-order discrete approxi-
mations of the integral representation would be to employ the
infinitesimal generator of the fractional Fourier transform,
that is, the derivative of the fractional Fourier transform with
respect to the power of the transform. This is readily com-
puted by differentiating the Hermite function expansion of
the fractional Fourier transform, and use of the derivative rule
for Hermite functions. Depending on the representation used
[5,14,15], the infinitesimal generator may be formed as a
linear combination of the Hamiltonian operator H and the
identity operator I; for the form of the integral representation
used earlier, this would be:
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in (14)
Z(H +1)

where and the identity operator I simply reproduces the origi-
nal function, and

&* 1s)
axz

The role of the infinitesimal generator, which can be denoted
as A, is to represent an operator group in exponential form, a

particular example is:
Fo=e4 16)

For small values of A, one can then approximate e as
I+(aA), so using the fact [12] from before (repeated here):

Dxe —1_72 Fq:e 2 Fq:e _
E=p) =F2F ek F k)]
FE

w2 F ef(-x)]

one can thgn approximate F€ as

an

. (&, 18)
F :1+(£A):1+£Z ﬁ—x +1

These operations can be readily applied to images using con-
ventional image processing methods. For non-pixilated
images, the original source image can be approximated by
two-dimensional sampling, and the resulting pixilated image
can then be subjected to the discrete version of the fractional
Fourier transform [10].

In cases where the discrete version of the fractional Fourier
transform [10] is implemented, the transform may be
approximated. Pairs of standard two-dimensional matrices,
one for each dimension of the image, can be used. As with the
continuous case, various types of analogous series approxi-
mations, such as those above, can be used.

Alternatively, it is noted that because of the commutative
group property of the fractional Fourier transform, the matrix/
tensor representations, or in some realizations even the inte-
grals cited above may be approximated by pre-computing one
ormore fixed step sizes and applying these respectively, itera-
tively, or in mixed succession to the image data.

One exemplary embodiment utilizing a pre-computation
technique may be where the fractional Fourier transform
represents pre-computed, positive and negative values of a
small power, for example 0.01. Negative power deviations of
increasing power can be had by iteratively applying the pre-
computed —0.01 power fractional Fourier transform; for
example, the power —-0.05 would be realized by applying the
pre-computed -0.01 power fractional Fourier transform five
times. In some cases of adaptive system realizations, it may
be advantageous to discard some of the resulting image data
from previous power calculations. This may be accomplished
by backing up to a slightly less negative power by applying
the +0.01 power fractional Fourier transform to a last stored,
resulting image.

As a second example of this pre-computation method, pre-
computed fractional Fourier transform powers obtained from
values of the series 2" and 27*¥ may be stored or otherwise
made available, for example:

{F:1/1024’F:1/512’F:1/256’F:1/128’F:1/64, . } (19)
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Then, for example, the power 11/1024 can be realized by

operating on the image data with

F1/1024F1/256F1/128 (20)

where the pre-computed operators used are determined by the
binary-decomposition of the power with respect to the small-
est power value (here, the smallest value is 1/1024 and the
binary decomposition of 11/1024 is 1/1024+1/256+1/128,
following from the fact that 11=8+2+1).

Such an approach allows, for example, N steps of resolu-
tion to be obtained from a maximum of log, N compositions
of'log, N pre-computed values. This approach may be used to
calculate fractional powers of any linear matrix or tensor, not
just the fractional Fourier transform.

It is noted that any of the aforementioned systems and
methods may be adapted for use on portions of an image
rather than the entire image. This permits corrections oflocal-
ized optical aberrations. In complicated optical aberration
situations, more than one portion of an image may be pro-
cessed in this manner, with differing corrective operations
made for each portion of the image.

It is further noted that the systems and methods described
herein may also be applied to conventional lens-based optical
image processing systems, to systems with other types of
elements obeying fractional Fourier optical models, as well as
to widely ranging environments such as integrated optics,
optical computing systems, particle beam systems, electron
microscopes, radiation accelerators, and astronomical obser-
vation methods, among others.

Commercial products and services application are wide-
spread. For example, the present invention may be incorpo-
rated into film processing machines, desktop photo editing
software, photo editing web sites, VCRs, camcorders, desk-
top video editing systems, video surveillance systems, video
conferencing systems, as well as in other types of products
and service facilities. Four exemplary consumer-based appli-
cations are now considered.

1. One particular consumer-based application is in the cor-
rection of camera misfocus in chemical or digital pho-
tography. Here the invention may be used to process the
image optically or digitally, or some combination
thereof, to correct the misfocus effect and create an
improved image which is then used to produce a new
chemical photograph or digital image data file. In this
application area, the invention can be incorporated into
film processing machines, desktop photo editing soft-
ware, photo editing web sites, and the like.

2. Another possible consumer-based application is the cor-
rection of video camcorder misfocus. Camcorder mis-
focus typically results from user error, design defects
such as a poorly designed zoom lens, or because an
autofocus function is autoranging on the wrong part of
the scene being recorded. Non-varying misfocus can be
corrected for each image with the same correction
parameters. In the case of zoom lens misfocus, each
frame or portion of the video may require differing cor-
rection parameters. In this application area, the inven-
tion can be incorporated into VCRs, camcorders, video
editing systems, video processing machines, desktop
video editing software, and video editing web sites,
among others.

3. Another commercial application involves the correction
of image misfocus experienced in remote video cameras
utilizing digital signal processing. Particular examples
include video conference cameras or security cameras.
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In these scenarios, the video camera focus cannot be
adequately or accessibly adjusted, and the video signal
may in fact be compressed.

4. Video compression may involve motion compensation
operations that were performed on the unfocused video
image. Typical applications utilizing video compression
include, for example, video conferencing, video mail,
and web-based video-on-demand, to name a few. In
these particular types of applications, the invention may
be employed at the video receiver, or at some pre-pro-
cessing stage prior to delivering the signal to the video
receiver. If the video compression introduces a limited
number of artifacts, misfocus correction is accom-
plished as presented herein. However, if the video com-
pression introduces a higher number of artifacts, the
signal processing involved with the invention may
greatly benefit from working closely with the video
decompression signal processing. One particular imple-
mentation is where misfocus corrections are first applied
to a full video frame image. Then, for some interval of
time, misfocus correction is only applied to the changing
regions of the video image. A specific example may be
where large portions of a misfocused background can be
corrected once, and then reused in those same regions in
subsequent video frames.

5. The misfocus correction techniques described herein are
directly applicable to electron microscopy systems and
applications. For example, electron microscope optics
employ the wave properties of electrons to create a
coherent optics environment that obeys the Fourier
optics structures as coherent light (see, for example,
John C. H. Spence, High-Resolution Electron Micros-
copy, third edition, 2003, Chapters 2-4, pp. 15-88). Elec-
tron beams found in electron microscopes have the same
geometric, optical physics characteristics generally
found in coherent light, and the same mathematical qua-
dratic phase structure as indicated in Levi [1] Section
19.2 for coherent light, which is the basis of the frac-
tional Fourier transform in optical systems (see, for
example, John C. H. Spence High-Resolution Electron
Microscopy, third edition, 2003, Chapter 3, formula 3.9,
pg. 55).

Misfocused Optical Path Phase Reconstruction

Most photographic and electronic image capture, storage,
and production technologies are only designed to operate
with image amplitude information, regardless as to whether
the phase of the light is phase coherent (as is the case with
lasers) or phase noncoherent (as generally found in most light
sources). In sharply focused images involving noncoherent
light formed by classical geometric optics, this lack of phase
information is essentially of no consequence in many appli-
cations.

In representing the spatial distribution of light, the phase
coefficient of the basis functions can be important; as an
example, FIG. 3.6, p. 62 of Digital Image Processing—Con-
cepts, Algorithms, and Scientific Applications, by Bernd
Jahne, Springer-Verlag, New York, 1991 [20] shows the effect
of'loss and modification of basis function phase information
and the resulting distortion in the image. Note in this case the
phase information of the light in the original or reproduced
image differs from the phase information applied to basis
functions used for representing the image.

In using fractional powers of the Fourier transform to rep-
resent optical operations, the fractional Fourier transform
reorganizes the spatial distribution of an image and the phase
information as well. Here the basis functions serve to repre-
sent the spatial distribution of light in a physical system and
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the phase of the complex coefficients multiplying each of the
basis functions mathematically result from the fractional
Fourier transform operation. In the calculation that leads to
the fractional Fourier transform representation of a lens, com-
plex-valued coefficients arise from the explicit accounting for
phase shifts of light that occurs as it travels through the optical
lens (see Goodman [2], pages 77-96, and Levi [1], pages
779-784).

Thus, when correcting misfocused images using fractional
powers of the Fourier transform, the need may arise for the
reconstruction of relative phase information that was lost by
photographic and electronic image capture, storage, and pro-
duction technologies that only capture and process image
amplitude information.

In general, reconstruction of lost phase information has not
previously been accomplished with much success, but some
embodiments of the invention leverage specific properties of
both the fractional Fourier transform and an ideal correction
condition. More specifically, what is provided—for each
given value of the focus correction parameter—is the calcu-
lation of an associated reconstruction of the relative phase
information. Typically, the associated reconstruction will be
inaccurate unless the given value of the focus correction
parameter is one that will indeed correct the focus of the
original misfocused image.

This particular aspect of the invention provides for the
calculation of an associated reconstruction of relative phase
information by using the algebraic group property of the
fractional Fourier transform to back calculate the lost relative
phase conditions that would have existed, if that given spe-
cific focus correction setting resulted in a correctly focused
image. For convergence of human or machine iterations
towards an optimal or near optimal focus correction, the
system may also leverage the continuity of variation of the
phase reconstruction as the focus correction parameter is
varied in the iterations.

To facilitate an understanding of the phase reconstruction
aspect of the invention, it is helpful to briefly summarize the
some of the image misfocus correction aspects of the inven-
tion. This summary will be made with reference to the various
optical set-ups depicted in FIGS. 4-8, and is intended to
provide observational details and examples of where and how
the relative phase reconstruction may be calculated (FIG. 9)
and applied (FIG. 10).

Misfocus Correction

FIG. 4 shows a general optical environment involving
sources of radiating light 400, a resulting original light orga-
nization (propagation direction, amplitude, and phase) 401
and its constituent photons. Optical element 402 is shown
performing an image-forming optical operation, causing a
modified light organization (propagation direction, ampli-
tude, and phase) 403 and its constituent photons, ultimately
resulting in observed image 404. This figure shows that for
each light organization 401, 403 of light and photons, the
propagation direction, amplitude, and phase may be deter-
mined by a variety of different factors. For example, for a
given propagation media, propagation direction, amplitude,
and phase may be determined by such things as the separation
distance between point light source 400 and optical element
402, the pixel location in a transverse plane parallel to the
direction of propagation, and light frequency/wavelength,
among others.

FIG. 5 is an optical environment similar to that depicted in
FIG. 4, but the FIG. 5 environment includes only a single
point light source 500. In this Figure, single point light source
500 includes exemplary propagation rays 501a, 5015, 501c¢
that are presented to optical element 502. The optical element
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is shown imposing an optical operation on these rays, causing
them to change direction 503a, 5035, 503¢. Each of the rays
503a, 5035, 503¢ are shown spatially reconverging at a single
point in the plane of image formation 504, which is a focused
image plane.

FIG. 5 also shows directionally modified rays 503a, 5035,
503c¢ spatially diverging at short unfocused image plane 505
and long unfocused image plane 506, which are each trans-
verse to the direction of propagation that is associated with
images which are not in sharp focus, which will be referred to
as nonfocused image planes. Further description of the opti-
cal environment shown in FIG. 5 will be presented to expand
on phase correction, and such description will be later dis-
cussed with regard to FIGS. 9-10.

Reference is now made to FIGS. 6-8, which disclose tech-
niques for mathematical focus correction and provides a basis
for understanding the phase correction aspect of the present
invention. For clarity, the term “lens” will be used to refer to
optical element 502, but the discussion applies equally to
other types of optical elements such as a system of lenses,
graded-index material, and the like.

FIG. 6 provides an example of image information flow in
accordance with some embodiments of the present invention.
As depicted in block 600, an original misfocused image is
adapted or converted as may be necessary into a digital file
representation of light amplitude values 601. Examples of
original misfocused images include natural or photographic
images. Digital file 601 may include compressed or uncom-
pressed image formats.

For a monochrome image, the light amplitude values are
typically represented as scalar quantities, while color images
typically involve vector quantities such as RBG values, YUV
values, and the like. In some instances, the digital file may
have been subjected to file processes such as compression,
de-compression, color model transformations, or other data
modification processes to be rendered in the form of an array
oflight amplitude values 602. Monochrome images typically
only include a single array of scalar values 602a. In contrast,
colorimages may require one, two, or more additional arrays,
such as arrays 6025 and 602¢. A CMYB color model is a
particular example of a multiple array, color image.

The array, or in some instances, arrays of light amplitude
values 602 may then be operated on by a fractional power of
the Fourier transform operation 603. This operation math-
ematically compensates for lens misfocus causing the focus
problems in the original misfocused image 600. A result of
this operation produces corrected array 604, and in case of a
color model, exemplary subarrays 604a, 6045, 604c¢ result
from the separate application of the fractional power of the
Fourier transform operation 603 to exemplary subarrays
602a, 6025, 602c¢. If desired, each of the corrected subarrays
604a, 6045, 604c may be converted into a digital file repre-
sentation of the corrected image 605; this digital file could be
the same format, similar format, or an entirely different for-
mat from that of uncorrected, original digital file representa-
tion 601.

FIG. 7 shows an optical environment having nonfocused
planes. This figure shows that the power of the fractional
Fourier transform operator increases as the separation dis-
tance between optical lens operation 502 and image planes
504, 505 increases, up to a distance matching that of the lens
law. In accordance with some aspects of the invention, and as
explained in Ludwig[5], Goodman [2], pages 77-96, and Levi
[1], pages 779-784, an exactly focused image corresponds to
a fractional Fourier transform power of exactly two. Further-
more, as previously described, misfocused image plane 505
lies short of the focused image plane 504, and corresponds to
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a fractional Fourier transform operation with a power slightly
less than two. The deviation in the power of the fractional
Fourier transform operation corresponding to short misfocus
image plane 505 will be denoted (-€), where the subscript
“S” denotes “short.” Since an exactly focused image at
focused image plane 504 corresponds to a fractional Fourier
transform power of exactly two, this short misfocus may be
corrected by application of the fractional Fourier transform
raised to the power (+€g), as indicated in block 701.

By mathematical extension, as described in [5], a long
misfocused image plane 506 that lies at a distance further
away from optical element 502 than does the focused image
plane 504 would correspond to a fractional Fourier transform
operation with a power slightly greater than two. The devia-
tion in the power of the fractional Fourier transform operation
corresponding to long misfocus image plane 506 will be
denoted (+€; ), where the subscript “L”” denotes “long.” This
long misfocus may be corrected by application of the frac-
tional Fourier transform raised to the power (-¢;), as indi-
cated in block 702.

Relative Phase Information in the Misfocused Optical Path

In terms of geometric optics, misfocus present in short
misfocused image plane 505 and long misfocused image
plane 506 generally correspond to non-convergence of rays
traced from point light source 500, through optical element
502, resulting in misfocused images planes 505 and 506. For
example, FIGS. 5 and 7 show exemplary rays 501a, 5015,
501c¢ diverging from point light source 500, passing through
optical element 502, and emerging as redirected rays 503a,
5035, 503¢. The redirected rays are shown converging at a
common point in focused image plane 504. However, it is
important to note that these redirected rays converge at dis-
creetly different points on misfocused image planes 505 and
506.

FIG. 81is a more detailed view of image planes 504, 505 and
506. Inthis figure, rays 503a, 5035, 503¢ are shown relative to
focused image plane 504, and misfocused image planes 505
and 506. This figure further shows the path length differences
that lead to phase shifts of the focused and unfocused planes
result from varying angles of incidence, denoted by 6, and 0,.
The distances of rays 503a, 5035, 503¢ from optical element
502 are given by the following table:

TABLE 1

Distance to Distance to incidence
incidence with ~ with long misfocused

Distance to incidence
with short misfocused

Ray plane 505 focus plane 504 plane 506
503a 8,5 &, 8,f
503b &5 & [
503¢ 8, &7 &,k

Simple geometry yields the following inequality relation-
ships:

RS (2D
b,5<6,7<6," (22)
8,°<8,"<d," (23)

For a given wavelength A, the phase shift ¢ created by a
distance-of-travel variation 9 is given by the following:

Y=27d/A (24)

so the variation in separation distance between the focus
image plane 504 and the misfocus image planes 505, 506 is
seen to introduce phase shifts along each ray.
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Further, for 7/2>6,>6,>0, as is the case shown in FIG. 8,
simple trigonometry gives:

87=8," sin 0, (25)

8F=8, sin 0, (26)

1>sin ©,>sin 6,>0 27
which in turn yields the inequality relationships:

80°<0,%<6,° (]

g™ <8<, 29

g™ <d,"<0," (30

Again, for a given wavelength A, the phase shift 1y created by
a distance-of-travel variation 8 is given by the following:

Y=27d/A (31)

so the variation in separation distance between focused image
plane 504 and the misfocused image planes 505, 506 is seen
to introduce non-uniform phase shifts along each ray. Thus
the misfocus of the original optical path involved in creating
the original image (for example, 600 in FIG. 6) introduces a
non-uniform phase shift across the rays of various incident
angles, and this phase shift varies with the distance of sepa-
ration between the positions of misfocused image planes 505,
506, and the focused image plane 504.

Referring again to FIGS. 6 and 7, an example of how a
misfocused image 600 may be corrected will now be
described. A misfocused image requiring correction will
originate either from short misfocused plane 505 or long
misfocused plane 506. In situations where misfocused image
600 originates from short misfocused plane 505, misfocus
correction may be obtained by applying a fractional Fourier
transform operation raised to the power (+€), as indicated in
block 701. On the other hand, in situations where misfocused
image 600 originates from long misfocused plane 506, mis-
focus correction may be obtained by applying a fractional
Fourier transform operation raised to the power (-¢;), as
indicated in block 702.

In general, the fractional Fourier transform operation cre-
ates results that are complex-valued. In the case of the discrete
fractional Fourier transform operation, as used herein, this
operation may be implemented as, or is equivalent to, a gen-
eralized, complex-valued array multiplication on the array
image of light amplitudes (e.g., ¢). In the signal domain,
complex-valued multiplication of a light amplitude array ele-
ment, v, by a complex-valued operator element ¢, results in
an amplitude scaling corresponding to the polar or phasor
amplitude of ¢, and a phase shift corresponding to the polar or
phasor phase of ¢.

FIG. 9 shows a series of formulas that may be used in
accordance with the present invention. As indicated in block
901, the fractional Fourier transform operation array (FrFT)
is symbolically represented as the product of an amplitude
information array component and a phase information array
component. The remaining portions of FIG. 9 illustrate one
technique for computing phase correction in conjunction with
the correction of image misfocus.

For example, block 902 shows one approach for correcting
image misfocus, but this particular technique does not pro-
vide for phase correction. Image correction may proceed by
first noting that the misfocused optics corresponds to a frac-
tional Fourier transform of power 2—e for some unknown
value of €; here e may be positive (short-misfocus) or negative
(long-misfocus). Next, the fractional Fourier transform may
be mathematically applied with various, systematically
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selected trial powers until a suitable trial power is found. A
particular example may be where the trial power is effectively
equal to the unknown value of €. The resulting mathemati-
cally corrected image appears in focus and a corrected image
is thus produced.

Referring still to FIG. 9, block 903 depicts the misfocus
correction technique of block 901, as applied to the approach
shown in block 902. This particular technique accounts for
the amplitude and phase components of the optical and math-
ematical fractional Fourier transform operations. In particu-
lar, there is an amplitude and phase for the misfocused optics,
which led to the original misfocused image 600.

As previously noted, conventional photographic and elec-
tronic image capture, storage, and production technologies
typically only process or use image amplitude information,
and were phase information is not required or desired. In
these types of systems, the relative phase information created
within the original misfocused optical path is lost since
amplitude information is the only image information that is
conveyed. This particular scenario is depicted in block 904,
which shows original misfocused image 600 undergoing mis-
focus correction, even thought its relative phase information
is not available. In all applicable cases relevant to the present
invention (for example, 0<e<2), the phase information is not
uniformly zero phase, and thus the missing phase information
gives an inaccurate result (that is, not equal to the focused
case of the Fourier transform raised to the power 2) for what
should have been the effective correction.

Relative Phase Restoration

In accordance with some embodiments, missing phase
information may be reintroduced by absorbing it within the
math correction stage, as shown block 905. This absorbing
technique results in a phase-restored math correction of the
form:

D(FZYFY (32)
where the following symbolic notation is used:
D(X)=phase(X) (33)

In the case where v is close enough to be effectively equal
to €, the phase correction will effectively be equal to the value
necessary to restore the lost relative phase information. Note
that this expression depends only on y, and thus phase cor-
rection may be obtained by systematically iterating y towards
the unknown value of €, which is associated with the misfo-
cused image. Thus the iteration, computation, manual adjust-
ment, and automatic optimization systems, methods, and
strategies of non-phase applications of image misfocus cor-
rection may be applied in essentially the same fashion as the
phase correcting applications of image misfocus correction
by simply substituting F¥ with ®(F>~Y) F¥ in iterations or
manual adjustments.

FIG. 10 provides an example of image information flow in
accordance with some embodiments of the invention. This
embodiment is similar to FIG. 6 is many respects, but the
technique shown in FI1G. 10 further includes phase restoration
component 1001 coupled with focus correction component
603. In operation, image array 602 is passed to phase resto-
ration component 1001, which pre-operates on image array
602. After the pre-operation calculation has been performed,
fractional Fourier transform operation 603 is applied to the
image array.

Numerical Calculation of Relative Phase Restoration

Next, the calculation of the phase-restored mathematical
correction is considered. Leveraging two-group antislavery
properties of the fractional Fourier transform operation, the
additional computation can be made relatively small.
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In the original eigenfunction/eigenvector series definitions
for both the continuous and discrete forms of the fractional
Fourier transform of power «, the nth eigenfunction/eigen-
vectors are multiplied by:

e—irm:cx/2 (34)
Using this equation and replacing o with (2-y) gives:

o= IT2—)2 = ginm g inr(—p)/2

e €D

—(—1yre 2

for both the continuous and discrete forms of the fractional
Fourier transform. Note that the following equation:

i) (36)
can be rewritten as:

e—inn(—y):eimry:(e—innv)* (3 7)
where (X)* denotes the complex conjugate of X.

Also, because the nth Hermite functionh, (y) is odd iny for
odd n, and even in y for even n, such that:

ha(=3)=(=1)"h,(~y) (3%8)
so that in the series definition the nth term behaves as:
I (9)e T EIR = ()b () (= e N (39
= I (O (—y)e™ 2

= Iy (O, (— y)e "

For both the continuous and discrete forms of the fractional
Fourier transform, replacing h, (y) with h, (-y) is equivalent to
reversing, or taking the mirror image, of h,(y). In particular,
for the discrete form of the fractional Fourier transform, this
amounts to reversing the order of terms in the eigenvectors
coming out of the similarity transformation, and because of
the even-symmetry/odd-antisymmetry of the Hermite func-
tions and the fractional Fourier transform discrete eigenvec-
tors, this need only be done for the odd number eigenvectors.

Further, since the Hermite functions and discrete Fourier
transform eigenvectors are real-valued, the complex conju-
gate can be taken on the entire term, not just the exponential,
as shown by:

B (), (=) (e )=, (), (~p)e

Since complex conjugation commutes with addition, all these
series terms can be calculated and summed completely before
complex conjugation, and then one complex conjugation can
be applied to the sum, resulting in the same outcome.

The relative phase-restored mathematical correction can
thus be calculated directly, for example, by the following
exemplary algorithm or its mathematical or logistic equiva-
lents:

1. For a given value of y, compute FY using the Fourier
transform eigenvectors in an ordered similarity transfor-
mation matrix;

2. For the odd-indexed eigenvectors, either reverse the
order or the sign of its terms to get a modified similarity
transformation;

3. Compute the complete resulting matrix calculations as
would be done to obtain a fractional Fourier transform,
but using this modified similarity transformation;

4. Calculate the complex conjugate of the result of opera-
tion (3) to get the phase restoration, (O(FY))*; and

(40)
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5. Calculate the array product of the operation (1) and
operation (4) to form the phase-restored focus correction
(DEFE))*F.

As an example of a mathematical or logistic equivalent to
the just described series of operations, note the commonality
of'the calculations in operations (1) and (3), differing only in
how the odd-indexed eigenvectors are handled in the calcu-
lation, and in one version, only by a sign change. An example
of' a mathematical or logistic equivalent to the above exem-
plary technique would be:

1.Fora given value of'y, partially compute FY using only the
even-indexed Fourier transform eigenvectors;

2. Next, partially compute the remainder of FY using only
the odd-indexed Fourier transform eigenvectors;

3. Add the results of operation (1) and (2) to get FY

4. Subtract the result of operation (2) from the result of
operation (1) to obtain a portion of the phase restoration;

5. Calculate the complex conjugate of the result of opera-
tion (4) to obtain the phase restoration (®(F¥))*; and

6. Calculate the array product of operations (1) and (4) to
form (®(FY))*F".

In many situations, partially computing two parts of one
similarity transformation, as described in the second exem-
plary algorithm, could be far more efficient than performing
two full similarity transformation calculations, as described
in the first exemplary algorithm. One skilled in the art will
recognize many possible variations with differing advan-
tages, and that these advantages may also vary with differing
computational architectures and processor languages.
Embedding Phase Restoration within Image Misfocus Cor-
rection

Where relative phase-restoration is required or desired in
mathematical focus correction using the fractional Fourier
transform, phase restoration element 1001 may be used in
combination with focus correction element 603, as depicted
in FIG. 10.

It is to be realized that in image misfocus correction appli-
cations which do not account for phase restoration, pre-com-
puted values of F¥ may be stored, fetched, and multiplied as
needed or desired. Similarly, in image misfocus correction
applications which provide for phase restoration, pre-com-
puted values of ®(F¥))*FY may also be stored, fetched, and
multiplied as needed or desired. For example, pre-computed
values of phase reconstructions may be stored corresponding
to powers of the fractional Fourier transform, such that the
powers are related by roots of the number 2, or realized in
correspondence to binary representations of fractions, or
both. In these compositions, care may need to be taken since
the array multiplications may not freely commute due to the
nonlinear phase extraction steps.

Each of the various techniques for computing the phase-
restored focus correction may include differing methods for
implementing  pre-computed phase-restorations.  For
example, in comparing the first and second exemplary algo-
rithms, predominated values may be made and stored for any
of:

First example algorithm operation (5) or its equivalent

second example algorithm operation (6);

First example algorithm operation (4) or its equivalent
second example algorithm operation (5); and

Second example algorithm operations (1) and (2) with
additional completing computations provided as
needed.

Again, it is noted that these phase restoration techniques
can apply to any situation involving fractional Fourier trans-
form optics, including electron microscopy processes and the
global or localized correction of misfocus from electron
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microscopy images lacking phase information. Localized
phase-restored misfocus correction using the techniques dis-
closed herein may be particularly useful in three-dimen-
sional, electron microscopy and tomography where a wide
field is involved in at least one dimension of imaging.

It is also noted that the various techniques disclosed herein
may be adapted for use on portions of an image rather than the
entire image. This permits corrections of localized optical
aberrations. In complicated optical aberration situations,
more than one portion may be processed in this manner, in
general with differing corrective operations made for each
portion of the image.

Iterative Fractional Fourier Transform Computation Environ-
ments [everaging the Structure of the Similarity Transforma-
tion

It is also possible to structure computations of the frac-
tional Fourier transform operating on a sample image array or
sampled function vector so that portions of the computation
may be reused in subsequent computations. This is demon-
strated in the case of a similarity transformation representa-
tion of the fractional Fourier transform in FIG. 11. The gen-
eral approach applies to vectors, matrices, and tensors of
various dimensions, other types of multiplicative decompo-
sitional representations of the fractional Fourier transform,
and other types of operators. In particular the approach illus-
trated in FIG. 11 may be directly applied to any diagonaliz-
able linear matrix or tensor, not just the fractional Fourier
transform.

FIG. 11 illustrates the action of a diagonalizable matrix,
tensor, or linear operator on an underlying vector, matrix,
tensor, or function 1101 to produce a resulting vector, matrix,
tensor, or function 1105. In this approach, the chosen diago-
nalizable matrix, tensor, or linear operator 1100 is decom-
posed in the standard way into a diagonalized representation
involving the ordered eigenvectors, eigenfunctions, etc.
arranged to form a similarity transformation 1102, a diagonal
matrix, tensor, or linear operator of eigenvalues 1103 with
eigenvalues arranged in an ordering corresponding to the
ordering of the similarity transformation 1102, and the
inverse similarity transformation 1104 (equivalent to the
inverse of similarity transformation 1102, i.e., the product of
the inverse similarity transformation 1104 and similarity
transformation 1102 is the identity). As described earlier,
arbitrary powers of the chosen diagonalizable matrix, tensor,
or linear operator 1100 may be obtained by taking powers of
the diagonal matrix, tensor, or linear operator of eigenvalues
1103, which amounts to simply raising each eigenvalue to the
desired power.

In particular, to obtain the a power of the chosen diagonal-
izable matrix, tensor, or linear operator 1100, one simply
raises each eigenvalue in the diagonal matrix, tensor, or linear
operator of eigenvalues 1103 to the o power. This is noted as
A%inFIGS. 4 and 5. Although the discussion thus far is for a
very general case, the underlying vector, matrix, tensor, or
function 1101 for the focus correction task will be the unfo-
cused image pixel array U, the resulting vector, matrix, ten-
sor, or function 1102 will be the trial “corrected” image pixel
array C 1105, the similarity transformation 1102 will be an
ordered collection of eigenvectors of the discrete Fourier
transform of two dimensions (a 4-tensor, but simply the outer
product of two 2-dimensional matrices, each diagonalized in
the standard fashion), and the diagonal matrix, tensor, or
linear operator of eigenvalues 1103 raised to the power o
amounts to the outer product of two 2-dimensional matrices,
each with eigenvalues of the discrete Fourier transform
arranged in corresponding order to that of P, the similarity
transformation 1102.
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It is possible to reuse parts of calculations made utilizing
this structure in various application settings. In a first exem-
plary application setting, the image is constant throughout but
the power a takes on various values, as in an iteration over
values of c in an optimization loop or in response to a user-
adjusted focus control. In this first exemplary application
setting, the product 1106 of the similarity transformation P
1102 and the unfocused image data U 1101 can be executed
once to form a precomputable and reusable result. Then any
number of a-specific values of the product of the inverse
similarity transformation P~' 1104 and the diagonal power
A* 1103 can be computed separately to form various values
of the a-specific portion 1107, and each may be multiplied
with the precalculated reusable result 1106. Further, since
diagonal power A* 1103 is indeed diagonal, multiplication of
it by inverse similarity transformation P~* 1104 amounts to a
“column” multiplication of a given column of inverse simi-
larity transformation P~' 1104 by the eigenvalue in the cor-
responding “column” of the diagonal power A* 1103. This
considerably simplifies the required computations in a com-
putational environment iterating over values of c.

FIG. 12 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through a
physical medium, in accordance with embodiments of the
invention. This approximation may be achieved by calculat-
ing a fractional power of a numerical operator, which is
defined by the physical medium and includes a diagonaliz-
able numerical linear operator raised to a power (o). In block
1240, a plurality of images are represented using an indi-
vidual data array for each of the plurality of images. Block
1245 indicates that the numerical operator is represented with
a linear operator formed by multiplying an ordered similarity
transformation operator (P) by a correspondingly-ordered
diagonal operator (A). The result of this is multiplied by an
approximate inverse (P~') of the ordered similarity transfor-
mation operator (P).

Next, in block 1250, the diagonal elements of the corre-
spondingly-ordered diagonal operator (A) are raised to the
power () to produce a fractional power diagonal operator.
Block 1255 includes multiplying the fractional power diago-
nal operator by an approximate inverse of the ordered simi-
larity transformation operator (P~1) to produce a first partial
result. Block 1260 includes multiplying a data array of one of
the plurality of images by the ordered similarity transforma-
tion operator (P) to produce a modified data array. Then,
block 1265 includes multiplying the modified data array by
the first partial result to produce the fractional power of the
numerical operator. If desired, the operations depicted in
block 1260 and 1265 may be repeated for each of the plurality
of images.

A second exemplary application is one in which parts of
previous calculations made using the structure of FIG. 11 are
reused. In this embodiment, the power o is constant through-
out but the image U 1101 is changed. This embodiment would
pertain to a fixed correction that may be repeatedly applied to
a number of image files, for example. This embodiment may
be used to correct a systemic misfocus episode involving a
number of image files U 1101, or implemented in situations in
which a particular value of the power a is to be applied to a
plurality of regions of a larger image. In this situation, the
a-specific portion 1107 of the calculation can be executed
once to form a precomputable and reusable result. Then any
number of image specific calculations 1106 may be made and
multiplied with this a-specific precomputable and reusable
result 1107. Again, since diagonal power A* 1103 is indeed
diagonal, multiplication of it by inverse similarity transfor-
mation P~* 1104 amounts to a “column” multiplication of a
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given column of inverse similarity transformation P~* 1104
by the eigenvalue in the corresponding “column” of the
diagonal power A® 1103, considerably simplifying the
required computations in a computational environment iter-
ating over a plurality of image files, for example.

FIG. 13 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through a
physical medium, in accordance with alternative embodi-
ments of the invention. This approximation may be achieved
by calculating a fractional power of a numerical operator,
which is defined by the physical medium and includes a
diagonalizable numerical linear operator raised to a power
(o) having any one of a plurality of values.

In block 1300, an image may be represented using a data
array. Block 1305 indicates that the numerical operator is
represented with a linear operator formed by multiplying an
ordered similarity transformation operator (P) by a corre-
spondingly-ordered diagonal operator (A). The result of this
is multiplied by an approximate inverse (P~') of the ordered
similarity transformation operator (P).

Next, in block 1310, the diagonal elements of the corre-
spondingly-ordered diagonal operator (A) are raised to one of
the plurality of values of the power (o) to produce a fractional
power diagonal operator. Block 1315 includes multiplying
the fractional power diagonal operator by an approximate
inverse of the ordered similarity transformation operator
(P™) to produce a first partial result. Block 1320 includes
multiplying the data array of the image by the ordered simi-
larity transformation operator (P) to produce a modified data
array. Then, block 1325 includes multiplying the modified
data array by the first partial result to produce the fractional
power of the numerical operator. If desired, the operations
depicted in blocks 1310 and 1315 may be repeated for each of
the plurality of values of the power (o).

FIG. 14 comparatively summarizes the general calcula-
tions of each of the two described exemplary embodiments in
terms ofthe structure and elements of FIG. 11. Image-specific
calculations involving matrix or tensor multiplications can be
carried out in an isolated step 1114, as can a.-specific calcu-
lations in a separate isolated step 1110. Since diagonal power
A% 1103 is diagonal, multiplication of it by inverse similarity
transformation P~! 1104 amounts to a “column” multiplica-
tion of a given column of inverse similarity transformation
P~! 1104 by the eigenvalue in the corresponding “column” of
the diagonal power A“ 1103, considerably simplifying the
required computations for the a-specific calculation step
1110. Depending on the situation, either step 1114, 1110 may
be made once and reused in calculations 1112 involving the
matrix or tensor multiplication of the result of shared pre-
computed results (i.e., one of 1114, 1110) and iteration-spe-
cific results (i.e., the other of 1114, 1110).

Matching the Centerings of the Numerical Transform and the
Modeled Lens Action

The discrete fractional Fourier transform is often described
as being based on the conventional definition of the classical
discrete Fourier transform matrix. Because the classical dis-
crete Fourier transform matrix has elements with harmoni-
cally-related periodic behavior, there is a shift invariance as to
how the transform is positioned with respect to the frequency-
indexed sample space and the time-indexed sample space.
The classical discrete Fourier transform matrix typically
starts with its first-row, first-column element as a constant,
i.e., zero frequency (or in some applications, the lowest-
frequency sample point), largely as a matter of convenience
since the family of periodic behaviors of the elements and
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time/frequency sample spaces (i.e., periodic in time via appli-
cation assumption, period in frequency via aliasing phenom-
ena) are shift invariant.

The periodicity structure of underlying discrete Fourier
transform basis functions (complex exponentials, or equiva-
lently, sine and cosine functions) facilitate this elegant shift
invariance in the matter of arbitrary positioning of the indices
defining the classical discrete Fourier transform matrix. Thus
the discrete classical Fourier transform is defined with its
native-zero and frequency-zero at the far edge of the native-
index range and frequency-index range. An example of this is
the matrix depicted in FIG. 15. In this figure, the left-most
column and top-most row, both having all entries with a value
of 1, denote the native-zero and frequency-zero assignments
to the far edge of the native-index range and frequency-index
range (noting e @=e©@®=g=1),

However, the continuous fractional Fourier transform
operates using an entirely different basis function alignment.
The continuous fractional Fourier transform is defined with
its native-zero and frequency-zero at the center of the native-
variable range and frequency-variable range. This is inherited
from the corresponding native-zero and frequency-zero cen-
tering of the continuous classical Fourier transform in the
fractionalization process. This situation differs profoundly
from the discrete classical Fourier transform and a discrete
fractional Fourier transform defined from it (which, as
described above, is defined with its native-zero and fre-
quency-zero at the far edge of the native-index range and
frequency-index range).

In particular, with respect to performing image propaga-
tion modeling with a fractionalization of a classical discrete
Fourier transform, it is further noted that the native-zero and
frequency-zero centering that corresponds to the continuous
fractional Fourier transform naturally matches the modeling
of the optics of lenses or other quadratic phase medium. In
these optical systems, the phase of the light or particle beam
varies as a function of the distance from the center of the lens.
This aspect is illustrated in FIGS. 16 A through 16C.

Turning now to FIGS. 16A through 16C, light or high-
energy particles are shown radiating spherically from a point
in source plane 1600, travelling through space or other
medium to a thin lens 1601 where their direction is changed
and redirected to a point in an image plane positioned accord-
ing to the lens law for a focused image. Because image plane
1602 is thus positioned, all light or high-energy particle paths
from the same source point that are captured by lens 1601 are
bent in such a way that they all converge at the same point in
the positioned image plane 1602. With respect to center line
1603, which is common to the center of the lens 1601, the
point of convergence is located antipodally (modulo magni-
fication factor), with respect the center line, from the location
of the emitting point in source plane 1600.

FIG. 16A is a side view of source point 1610, which radi-
ates in exemplary diverging paths 1611a, 1612a which are
then bent by lens 1601 into converging paths 16115 and
16125. Converging paths 16115 and 16125 are shown recon-
verging at point 1615 in image plane 1602. Modulo any
magnification factor induced by the lens law action, conver-
gence point 1615 is at a location opposite (antipodal), with
respect to center line 1603, to the position of source point
1610.

FIG. 1654 is a side view of second source point 1620, which
is located at a greater distance from center line 1603 as com-
pared to source point 1610 of FIG. 16 A. Second source point
1620 is shown radiating in exemplary diverging paths 1621a
and 16224, which are then bent by lens 1601 into converging
paths 16215 and 16225. Converging paths 16215 and 16225
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are shown reconverging at point 1625 in image plane 1602.
Notably, point 1625 is located at a greater distance from
center line 1603, as compared to source point 1610 of FIG.
16A. Modulo any magnification factor induced by the lens
law action, convergence point 1625 is at a location opposite
(antipodal), with respect to center line 1603, to the position of
source point 1620.

Similarly, FIG. 16C is a side view of third source point
1630, which is located at a still further distance from center
line 1603. Third source point 1630 is shown radiating along
exemplary diverging paths 1631a and 16324 when are bent by
lens 1601 into converging paths 16315 and 16325 Converging
paths 1631a and 16325 are shown reconverging at point 1635
in image plane 1602. Note that point 1635 is located at a still
greater distance from center line 1603. Modulo any magnifi-
cation factor induced by the lens law action, the convergence
point 1635 is at a location opposite (antipodal), with respect
to center line 1603, to the position of the source point 1630.

FIG. 16D is a top view of image 1650, which is shown
having a variety of contours 1651, 1652, 1653, and 1654 of
constant radial displacement with respect to the image center.
It is to be understood that any point on any of the identified
contours, which is located in a source plane, such as source
plane 1600, will give rise to a point that can only lie within a
corresponding contour (modulo magnification) in an image
plane, such as image plane 1602. Thus, the path length of a
given path from a point on one contour in source plane 1600,
through lens 1601, to its reconvergence point in the image
plane 1602, is rotationally invariant with respect to lens center
line 1603, but is not translationally invariant. Thus induced
phase shift of each path will be affected by offsets or shifts in
location between the image center line 1603 and the source
and image centers.

The fractional Fourier transform model, at least in the case
of coherent light or high-energy particle beams, can be
thought of as performing the phase accounting as the image
evolves through the propagation path. Thus, the classical
continuous Fourier transform and its fractionalization match
the modeled optics in sharing the notion of a shared zero
origin for all images and lenses, while the classical discrete
Fourier transform and its fractionalization do not because of
the above-described offset in zero origin to the far edge of the
transform index range. It is understood that in the foregoing
discussion with respect to lenses applies equally to almost any
type of quadratic-index media, such as GRIN fiber.

The basis functions used in defining the continuous frac-
tional Fourier transform are the Hermite functions, which are
not periodic despite their wiggling behavior—the n Hermite
function has only n zeros (i.e., n axis crossings) and no more.
Further, the polynomial amplitude fluctuations of each Her-
mite function is multiplied by a Gaussian envelope. These
non-periodic functions do not have the shift-invariance prop-
erties of sines, cosines, and complex exponentials. As a result,
and of specific note, the shift rules in the time domain and
frequency domain are far more complicated for the fractional
Fourier transform than for the classical Fourier transform.

Thus, brute-force application of the same fractionalization
approach used in the continuous case to the classical discrete
Fourier transform matrix (which does not position time and
frequency center at zero as does the continuous case), could
create undesirable artifacts resulting from the non-symmetric
definition. It is, in effect, similar to defining the continuous
fractional Fourier transform by the fractionalization of a
“one-sided” continuous classical Fourier transform whose
range of integration is from zero to positive infinity rather
than from negative infinity to positive infinity. This can be
expected to have different results. For example, although it
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can be shown that pairs of Hermite functions which are both
of' odd order or both of even order are indeed orthogonal on
the half-line, pairs of Hermite functions which are one of odd
order and one of even order are not orthogonal on the half-
line. As a result, fractionalization of a “one-sided” continuous
classical Fourier transform whose range of integration is from
zero to positive infinity would not have the full collection of
Hermite functions as its basis and hence its fractionalization
would have different properties than that of the “two-sided”
continuous fractional Fourier transform. However, it is the
fractionalization of the “two-sided” continuous classical Fou-
rier transform that matches the optics of lenses and other
quadratic phase medium. The fractionalization of a differ-
ently defined transform could well indeed not match the
optics of lenses and other quadratic phase medium.

Hence, the brute-force application of the same fractional-
ization approach to the classical discrete Fourier transform
matrix (which does not position time and frequency center at
zero), could for some implementations be expected to create
artifacts resulting from a non-symmetric definition. Some
studies have reported that the discrete fractional Fourier
transform defined from just such “brute force” direct diago-
nallization of the classical discrete Fourier transform report
pathologies and non-expected results. It may, then, in some
implementations, be advantageous—or even essential—to
align the zero-origin of the discrete fractional Fourier trans-
form with the zero-origin of the lens action being modeled.

There are a number of ways to define a solution to address
this concern. A first class of approaches would be to modify
the discrete classical Fourier transform so that its zero-origins
are centered with respect to the center of the image prior to
fractionalization. This class of approaches would match the
discrete transform structure to that of the optics it is used to
model. Another class of approaches would be to modify the
image so that the optics being modeled matches the zero-
origins alignment of the classical discrete Fourier transform
matrix, and then proceed with its brute-force fractionaliza-
tion. Embodiments of the invention provide for either of these
approaches, a combination of these approaches, or other
approaches which match the zero-origins alignment of a dis-
crete Fourier transform matrix and the image optics being
modeled prior to the fractionalization of the discrete Fourier
transform matrix.

An exemplary embodiment of the first class of approaches
would be to shift the classical discrete Fourier transform to a
form comprising symmetry around the zero-time index and
the zero-frequency index before fractionalization (utilizing
the diagonalization and similarity transformation opera-
tions). This results in a “centered” classical fractional Fourier
transform, and its fractionalization would result in a “cen-
tered” discrete fractional Fourier transform.

The classical discrete Fourier transform, normalized to be
a unitary transformation, can be represented as an L-by-L
matrix whose element in row p and column q is:

1 e 41
DFTupsg) = e 0

The resulting matrix is depicted in FIG. 15.

The unitary-normalized, classical discrete Fourier trans-
form may be simultaneously shifted in both its original and its
frequency indices by k units by simply adding or subtracting
the offset variable k for each of those indices:
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1 I _ 42)
DFTu.ny(p. @) = _\/f grikrpDikta- DL

The shifted transform may be centered by setting k to the
midpoint of the index set {1, 2, 3, .. . L}. This is done by
setting

k=(L+1)/2. 43)

FIG. 17 shows a resulting matrix for the “centered” normal-
ized classical discrete Fourier transform, in which L is taken
as an odd integer. In this figure, the matrix is bisected verti-
cally and horizontally by a central row and column of ele-
ments having a value of 1. These values correspond to the zero
values of the original and frequency indices. It is noted that if
L is an even integer, these terms of value 1 will not occur, and
in this case there will be no term directly representing a zero
frequency nor the original image center.

Due to the reflective aliasing of negative frequency com-
ponents into higher-index frequency samples, the classical
discrete Fourier transform is shifted in such a way towards the
indices centers would typically not compromise redundancy
and diminished bandwidth due to symmetry around zero as
might be expected. As an example, consider an exemplary
signal comprising a unit-amplitude cosine wave of frequency
30 offset by a constant of Va:

1 @4
cos(2m-30x) + I

Both the classical discrete Fourier transform and the clas-
sical continuous Fourier transform naturally respond to the
complex exponential representation, specifically

l 2160 | l oo | | % “5)

2

[}

as is well known to those skilled in the art. In the unshifted
(i.e., k=0) case, the classical discrete Fourier transform acts
on a signal such as this would produce a frequency-domain
output like that depicted in FIG. 18A. In this figure, the
classical discrete Fourier transform is shown acting on a
signal sampled at 201 sample points {0, 1,2,3,...,199,200}.
The constant term of V4 appears at zero frequency (frequency
point 1 in the sequence), the positive frequency component %2
%™ term appears at frequency 30 (frequency point 31 in the
sequence) and the negative frequency component V5 e~/%%
term is reflected back—through the far edge of the sampling
domain at frequency 200 (frequency point 201 —by the alias-
ing process to a location at frequency 170 (frequency point
171 in the sequence).

In contrast, FIG. 18B illustrates the “centered” classical
discrete Fourier transform acting on the same signal. Here the
domain of the sampling and frequency indices range from
-100 to +100, specifically {-100, =199, . . . -2, -1, 0, 1,
2,...,99, 100}. The constant term of ¥4 appears at zero
frequency (frequency point 101 in the sequence), the positive
frequency component %4 e’ ®°™* term appears at frequency 30
(frequency point 131 in the sequence), but here the negative
frequency component Y2 e~ ®°* * term appears—without
aliasing—at frequency -30 (frequency point 71 in the
sequence).
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This leads to direct interpretations of positive frequency
and negative frequency discrete impulses that correspond
with positive frequency and negative frequency Dirac delta
functions that would appear as the classical continuous Fou-

5 rier transform. More importantly, this re-configuring of the
computational mathematics of the underlying discrete Fou-
rier transform matrix gives a far more analogous fractional-
ization to that of the continuous fractional Fourier transform
than the discrete fractional Fourier transform described in
most publications (which are based on the unshifted classical
discrete Fourier transform matrix definition). Of course, care
must be taken to avoid artifacts created by frequency aliasing
effects as would be known to, clear, and readily addressable to
one skilled in the well-established art of frequency-domain

—_
<

15 numerical image processing.

For a monochrome rectangular NxM image X(r,s), the
unshifted classical discrete Fourier transform result Y(m,n)
is, as is well known to one skilled in the art, given by an
expression such as:

20
N oM (46)
Y(nm) =" 3" DFTan(s, MIDFTy(r, mX(r, s)
s=1 r=1
25
Whe.re DFT, (p, q) is as given above, though typically nor-
malized by 1/L rather than
30 1
Vi
Incorporating the shift to centered positions of k,~(M+1)/2
35 and k,=(N+1)/2, one obtains:
Y(n, m) = 47
N+l M+1
40 & &
Z Z DFTm1y2,0(s, MIDF Ty 1y2,m(r, mX(r, s)
o NHL T
-2 2
Taking the fractional power (o) of each unshifted classical
45 . . . . X .
discrete Fourier transform matrix as described in previous
sections, the overall computation will become:
Y(n, m) = (48)
0 (n, m)
N+l M+l
2 2
Z DF Ty 1y2u0) (5 MIDF Ty 1y m)(r, mX(r, 5)
TNt
2 2
55
Finally, adapting the image notation to unfocused source
image U(r,s) and corrected image C(m,n) yields the overall
operation:
60
Cn, m) = 49)
N+l M+l
2 2
Z Z DF T 1o nn (s MYDFTy 4132 3)(rs MU (7, 5)
65 S:,N,;;l ,:,Mzil,
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In the more general case, one can leave the centerings k,,
and k,,unspecified so that they may be set to zero to obtain the
unshifted version, or they may be set to k,~(M+1)/2 and
k,~=(N+1)/2 to obtain the centered version. Embodiments of
the invention provide for both of these as well as other equiva-
lent or analogous formulations. Of course, it is understood by
one skilled in the art that all the summing operations above
may be readily expressed as matrix and tensor operations,
with and within the techniques of fractionalization, iterative
computation, reuse of stored and/or precomputed values,
handling of color images, etc., may be directly and straight-
forwardly applied.

The contrasting second class of approaches for aligning the
center of the numerical transform and that of the images
involves adapting the images to the centering of the numerical
transforms. An exemplary embodiment of this second class of
approaches could begin with the partition of an original image
into, for example, four quadrant images separated by a pair of
perpendicular lines that intersect at the center of the original
image.

Referring now to FIG. 19, image 1900 is shown having
height h and width w. The image has a natural center 1950
which corresponds to that of the center line of the lens or
equivalent optical element as described above. Vertical edges
1912 and 1913 are indexed with extremes of —h/2 and +h/2
with center index zero as with example element 1901. Simi-
larly, horizontal edges 1902 and 1903 are indexed with
extremes of —w/2 and +w/2 with center index zero as with
example element 1911. In contrast to the first class of
approaches described above, this exemplary embodiment of a
second class of approaches utilizes an image which is sepa-
rated along perpendicular lines into four parts, as illustrated in
FIG. 20.

Each of the four distinct quadrant parts 2001, 2002, 2003,
and 2004 of the original image 1900 may be treated as an
isolated image 20014, 20024, 20034, and 2004a with its own
zero-origins in a far corner, matching in abstraction the zero-
corner attribute of the discrete classical Fourier transform.
The coordinates of the four quadrant images may then be
interpreted or realigned, as denoted by blocks 20015, 20025,
20035, and 20045 to match the coordinate system of the
discrete classical Fourier transform.

The brute-force fractionalization of the discrete classical
Fourier transform can be applied to each of these to obtain
four quadrant transformed images, denoted by transformed
images 2001c, 2002¢, 2003¢, and 2004¢. The transformed
images 2001c¢, 2002¢, 2003¢, and 2004¢ can then be interpre-
tively or operationally realigned and reassembled, resulting
in reassembled images 20014, 20024, 20034, and 20044. The
reassembled images 2001d, 20024, 20034, and 20044 may
then be used to form the larger composite image 2010 that
matches the quadrant configuration of the original image
1900. Without undergoing any additional processing, com-
posite image 2010 would typically have edge effects at the
quadrant boundaries.

If desired, these edge effects may be resolved, softened, or
eliminated by performing additional calculations. For
example, a second pair, or more, of perpendicular lines can be
used to partition the original image in a manner that differs
from that which is shown in FIG. 20 (for example, rotated
and/or shifted with respect the original pair). Then, the pro-
cess shown and described in conjunction with FIG. 20 may
then be applied to these distinctly different quadrants as well.
The generated calculations may be cross-faded or pre-empha-
sized and added to produce a composite image with signifi-
cantly diminished boundary edge-effect artifacts.
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Software and Hardware Realizations

Typically, each of the various techniques described herein
are invariant of which underlying discrete Fourier transform
matrix is fractionalized to define the discrete fractional Fou-
rier transform matrix. Although embodiments of the present
invention may be implemented using the exemplary series of
operations depicted in the figures, those of ordinary skill in
the art will realize that additional or fewer operations may be
performed. Moreover, it is to be understood that the order of
operations shown in these figures is merely exemplary and
that no single order of operation is required. In addition, the
various procedures and operations described herein may be
implemented in a computer-readable medium using, for
example, computer software, hardware, or some combination
thereof.

For a hardware implementation, the embodiments
described herein may be implemented within one or more
application specific integrated circuits (ASICs), digital signal
processors (DSPs), digital signal processing devices
(DSPDs), programmable logic devices (PLDs), field pro-
grammable gate arrays (FPGAs), processors, controllers,
micro-controllers, microprocessors, other electronic units
designed to perform the functions described herein, or a com-
bination thereof.

For a software implementation, the embodiments
described herein may be implemented with modules, such as
procedures, functions, and the like, that perform the functions
and operations described herein. The software codes can be
implemented with a software application written in any suit-
able programming language and may be stored in a memory
unit, such as memory 208 or memory 306, and executed by a
processor. The memory unit may be implemented within the
processor or external to the processor, in which case it can be
communicatively coupled to the processor using known com-
munication techniques. Memory 306 may be implemented
using any type (or combination) of suitable volatile and non-
volatile memory or storage devices including random access
memory (RAM), static random access memory (SRAM),
electrically erasable programmable read-only memory (EE-
PROM), erasable programmable read-only memory
(EPROM), programmable read-only memory (PROM), read-
only memory (ROM), magnetic memory, flash memory, mag-
netic or optical disk, or other similar memory or data storage
device.

The programming language chosen should be compatible
with the computing platform according to which the software
application is executed. Examples of suitable programming
languages include C and C++. The processor may be a spe-
cific or general purpose computer such as a personal com-
puter having an operating system such as DOS, Windows,
OS/2 or Linux; Macintosh computers; computers having
JAVA OS as the operating system; graphical workstations
such as the computers of Sun Microsystems and Silicon
Graphics, and other computers having some version of the
UNIX operating system such as AIX or SOLARIS of Sun
Microsystems; or any other known and available operating
system, or any device including, but not limited to, laptops
and hand-held computers.

While the invention has been described in detail with ref-
erence to disclosed embodiments, various modifications
within the scope of the invention will be apparent to those of
ordinary skill in this technological field. It is to be appreciated
that features described with respect to one embodiment typi-
cally may be applied to other embodiments. Therefore, the
invention properly is to be construed with reference to the
claims.
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I claim:

1. A method for numerically modeling evolution of an
image propagating through a medium, the method compris-
ing:

representing an image using image data comprising a plu-

rality of spatially-indexed amplitude values, the image
data comprising a center located relative to the plurality
of spatially-indexed amplitude values;

providing a propagation medium model comprising qua-

dratic phase properties which are defined relative to a
propagation centerline of the propagation medium
model,;

aligning the propagation centerline of the propagation

medium model relative to the center of the image data;

approximating the propagation medium model with a

numerical operator for applying an index-shifted
numerical fractional Fourier transform operation on the
image data, the numerical operator having original-do-
main indices and transform-domain indices, wherein the
original-domain indices comprise a zero original-do-
main origin that is centered within the original-domain
indices, and the transform-domain indices comprise a
zero transform-domain origin that is centered within the
transform-domain indices; and

aligning the zero original-domain origin relative to the

center of the image data to produce transformed image
data comprising a zero frequency-domain origin that is
centered within the transform-domain indices.

2. The method of claim 1, wherein the propagation medium
model corresponds to effects induced by a single lens.

3. The method of claim 1, wherein the propagation medium
model corresponds to effects induced by a system of lenses.

4. The method of claim 1, wherein the propagation medium
model corresponds to effects induced by graded-index mate-
rial.

5. The method of claim 4, wherein said graded-index mate-
rial is an optical fiber.

6. The method of claim 1, wherein the image data com-
prises an image formed by light.

7. The method of claim 1, wherein the image data com-
prises an image formed by a particle beam.

8. The method of claim 1, wherein the transformed image
data is structured to permit correction of misfocus in the
image.

9. The method of claim 1, wherein the index-shifted
numerical fractional Fourier transform operation further
comprises a fractional power which is an adjustable param-
eter.

10. The method of claim 1, wherein the modeled medium
comprises a spatial separation.

11. The method of claim 1, wherein the index-shifted
numerical fractional Fourier transform operation is obtained
by reorganizing operations on the eigenvectors for a tradi-
tional numerical discrete Fourier transform matrix or tensor.

12. The method of claim 1, wherein the center of the image
data is either an exact center or an approximate center.



