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HIGH-ACCURACY CENTERED
FRACTIONAL FOURIER TRANSFORM
MATRIX FOR OPTICAL IMAGING AND
OTHER APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. Pat. No. 8,542,
945 B1, filed Nov. 15, 2010, which claims benefit of priority
of U.S. Provisional Application 61/261,358, filed Nov. 15,
2009, the contents of which is incorporated by reference in its
entirety.

Further, this application is related to U.S. Pat. Nos. 6,687,
418;7,054,504; 7,203,377, 7,039,252, 7,627,195, 7,697,777,
and copending U.S. patent application Ser. Nos. 12/101,878
and 12/754,587, all having the same inventor.

BACKGROUND

1. Field of the Invention

The application relates to the use of operator group prop-
erties of the fractional Fourier transform for correction of
mis-focus in stored digital images produced by coherent
optics such as laser imaging, transmission electron micro-
scope imaging, particle-beam imaging, coherent X-ray imag-
ing, etc. More specifically, the application relates to the cre-
ation of centered discrete fractional Fourier transformations
with high-accuracy orthonormal eigenvectors for the correc-
tion of underfocus and overfocus, and for an automatic con-
trol system that automatically improves the focus of a mis-
focused image.

2. Background

Although consumer cameras increasingly provide auto-
matic focusing features useful at the time of shooting, in
many situations all that exists is an image or video that is
out-of-focus and the scene or situation cannot be repeated for
the benefit of a new photograph or video to be taken.

The term “blur” is usually reserved for motion blur rather
than mis-focus effects, although the term “blur” can include
mis-focus effects. However, mis-focus (resulting from mis-
adjusted optics, such as a lens mis-setting) fundamentally
differs from motion blur (resulting from motion of the subject
or the camera).

Motion blur is relatively easily corrected with numerous
textbook algorithms [4,5] and several available current prod-
ucts. Numerous techniques have been developed for the cor-
rection of motion blur. However, mis-focus effects are fun-
damentally different from motion blur. Statistically-based
processes useful for motion blur can be applied the effects of
mis-focus, and can in some cases offer marginal improve-
ment, but a corrected focus is outside the reach of such algo-
rithms. Typically attempts to correct mis-focus with blur cor-
rection or any other known techniques almost without fail
give very poor results. Aside from the body of work to which
this patent application pertains, there are no known mis-focus
correction algorithms, Thus if one has a photograph or video
of an irreproducible situation that is out-of-focus, there has
been simply no recourse.

Image mis-focus is not restricted to conventional optical
systems such as photography, video, and optical microscopes.
Image mis-focus also occurs with laser systems, electron
microscope imaging, particle-beam imaging, coherent X-ray
imaging, etc. This second collection of applications employs
coherent electromagnetic radiation. In contrast, conventional
optical systems such as film and digital photography, video
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2

cameras, and optical microscopes employ normal light (“in-
coherent electromagnetic radiation™).

This application may addresses the need for correcting
mis-focus in existing images created by “coherent electro-
magnetic radiation” imaging. The technique includes use of a
mathematical transformation known as a fractional Fourier
transform [1-3]. The implementations of this application uses
algorithms executing on a processor to numerically correct
underfocus and/or overfocus conditions in images or portions
of' images created with coherent light (laser), coherent elec-
tron beams (transmission electron microscopes), and poten-
tially those of coherent microwaves (masers), coherent X-ray
imaging, and other coherent imaging systems.

In an example realization, the application corrects mis-
focus of at least a portion of an image created from coherent
imaging in an image file on a numerical processor using a
two-dimensional centered fractional Fourier transform or
mathematical equivalents. A received image is presented to a
numerical processor, and a first numerical value for a variable
a is selected and used in an iterative algorithm executing on
the numerical processor. A two-dimensional centered dis-
crete fractional Fourier transform operator of power o and a
phase correction operator associated with a two-dimensional
centered discrete fractional Fourier transform matrix of
power 2-a. are both applied to the at least a portion of the
image file to produce a modified at least a portion of the image
file which is inspected. A change in the mis-focused condition
with respect to the original mis-focused condition is deter-
mined and used in adjusting the numerical value for the
variable a to a new value for use in a next iteration of the
numerical procedure. Ifreal values for o between 0 and a real
number [} do not result in a desired outcome, a is adjusted to
a complex value of the form f+y where v is an imaginary
number.

SUMMARY

A method for correcting mis-focus of image file created
from coherent imaging using centered fractional Fourier
transforms or mathematical equivalents is described. A
received image is presented to a numerical processor, and a
first numerical value for a variable o is selected and used in an
iterative numerical procedure, algorithm, system architec-
ture, etc. A centered discrete fractional Fourier transform of
power o and a phase restore operator associated with a cen-
tered discrete fractional Fourier transform of power o are
applied to the image file to produce a modified image. A
change in mis-focused is determined and used in adjusting
for anext iteration. If values for a between 0 and real number
[ do not result in a desired outcome, o is adjusted as a
complex value f+iy where y is an real number.

Various aspects of the application include: the two-dimen-
sional centered discrete fractional Fourier transform operator
of power a.is applied either before or after applying the phase
correction operator associated with a two-dimensional cen-
tered discrete fractional Fourier transform matrix of power
[-c.; the two-dimensional centered discrete fractional Fourier
transform operator is defined so that the number m is O; the
two-dimensional centered discrete fractional Fourier trans-
form operator is defined so that number f3 is 2.

In another aspect of the application, the two-dimensional
centered discrete fractional Fourier transform operator or the
phase correction operator is represented as a 4-dimensional
tensor or a 4-dimensional array.

In another aspect of the application, the two-dimensional
centered discrete fractional Fourier transform operator is
applied as a first one-dimensional centered discrete fractional
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Fourier transform matrix operating on columns of the image
file and a second one-dimensional centered discrete fractional
Fourier transform matrix operating on rows of the at least
portions of the image file.

In another aspect of the application, the phase correction is
applied as a first one-dimensional phase correction operator
matrix associated with a two-dimensional centered discrete
fractional Fourier transform matrix of power §-a operating
on columns of the at least portions of the image file and a
second one-dimensional phase correction operator matrix
associated with a two-dimensional centered discrete frac-
tional Fourier transform matrix of power - operating on
rows of the at least portions of the image file.

The focus correction can be used on images created from
coherent imaging, coherent light imaging, or coherent par-
ticle beam imaging.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of
the present application will become more apparent upon con-
sideration of the following description of preferred embodi-
ments, taken in conjunction with the accompanying drawing
figures.

FIG. 1 depicts an exemplary geometric optics setup for the
lens law in the case of a convex-convex thin-lens with focal
length “f”

FIG. 2 depicts a setup and notation for mathematical mod-
eling of an exemplary geometric optics setup such as that
depicted in Figure A (FIG. 1).

FIG. 3 depicts a point source of light radiating in an
expanding spherical wavefront incident on an optical ele-
ment, the optical element redirecting the radiating light in a
convergent spherical wave that converges to a point in the
“focus plane,” not yet converged in the “underfocus region,”
and divergent again in the “overfocus region.”

FIG. 4 depicts an adaptation of FIG. 3 comprising three
point sources with additional exemplary light rays or particle
beam rays so as to show the differences between exemplary
underfocus and overfocus processes.

FIG. 5 depicts the fractional Fourier transform for all real-
values of the power a is a one-parameter unitary operator
group of period 4 that is isomorphic to the circle group.

FIG. 6 shows the behavior of the unique analytical con-
tinuation of the arccosine function for arguments taking on
values between -2 and +2.

FIG. 7 shows example behavior of the arccosine fractional
Fourier power formula, such as in [3], for observation sepa-
ration distance b taking on values between 1 and 3 in the case
of focal length =1 and source separation distance a=2.

FIG. 8 depicts an adaptation of the arrangement depicted
earlier in FIG. 3 and FIG. 4 adapted for discussion of mis-
focus correction.

FIG. 9 depicts an exemplary image information flow for a
focus correction system.

FIG. 10 collectively depicts an exemplary algorithmic
structure for a focus correction system.

FIGS. 11a-11c¢ depict representations of the range and
domain of an n-dimensional DFT matrix.

FIG. 12a provides a table of example values of eigenvalue
multiplicities of a discrete Fourier transform (DFT) matrix
defined with negative exponential argument for example val-
ues of n.

FIG. 125 provides a table of example values of eigenvalue
multiplicities of a discrete Fourier transform (DFT) matrix
defined with positive exponential argument for example val-
ues of n.

FIGS. 13a-13e depict representations of an eigenspace
spectral decomposition of an n-dimensional DFT matrix.
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FIG. 14 depicts the “Fourier ring” representing the period-
icity of the 1-dimensional DFT.

FIG. 15 depicts the “Fourier torus” representing the two-
fold periodicity of the 2-dimensional DFT.

FIG. 16 depicts an example of the structure of a centered
DFT matrix of odd-order.

FIG. 17 depicts this example construction of a 1-dimen-
sional centered fractional discrete Fourier matrix of order n.

FIG. 18 depicts this example construction of the P (eigen-
vector) matrix associated with a 1-dimensional centered frac-
tional discrete Fourier matrix of order n.

FIG. 19 depicts an exemplary closed-form rendering of
linearly dependent eigenvectors of the DFT matrix or order n.

FIG. 20 provides an example path through iterated appli-
cations of a Gram-Schmidt algorithm for each image dimen-
sion, the application of the centering operations, and con-
struction of the two 1-dimensional discrete fractional Fourier
transform matrices.

FIG. 21 depicts an exemplary closed-form rendering of
orthogonal eigenvectors of the DFT matrix or order n.

FIG. 22 provides an example path through iterated appli-
cations of a Gram-Schmidt algorithm for each image dimen-
sion, the application of the centering operations, and con-
struction of the two 1-dimensional discrete fractional Fourier
transform matrices.

FIG. 23 depicts the general framework for iteratively
applying the real or imaginary values of the power variable c.

FIG. 24 depicts representations of both a CTEM and a
STEM electron microscope.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following detailed description, reference is made to
the accompanying drawing figures which form a part hereof,
and which show by way of illustration specific embodiments
of'the application. It is to be understood by those of ordinary
skill in this technological field that other embodiments can be
utilized, and structural, electrical, as well as procedural
changes can be made without departing from the scope of the
present application. Wherever possible, the same reference
numbers will be used throughout the drawings to refer to the
same or similar parts.

1. Integral Representation of Lens Imaging

FIG. 1 depicts the standard geometric optics setup for the
lens law in the case of a convex-convex thin-lens with focal
length “f” The incident image is separated by a distance of
“a” from the idealized thin-lens.

FIG. 2 depicts a setup and notation for mathematical mod-
eling of an exemplary geometric optics setup such as that
depicted in FIG. 1. Using the setup and notation of FIG. 2, the
general ray-tracing calculation in the case of coherent light
(i.e., from a laser) of wavelength A is well-known [6-8] and
can be written as

L o [t 221031, y2) =

iAC iespron ﬁ f

e

+x2

27i(cb-1)
2eain 1 e”’“’i (yl*yz)]

2cb20

e[?\lﬂ(xl 1 ””2)]14()61, X2)dx; dxy
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and the other constant C can be readily calculated from physi-
cal quantities. As with photons, high energy electrons behave
as waves, can be focused with various types of “electron lens”
technologies, and ideally effectively act as coherent radiation
obeying an identical type of ray-tracing calculation [9-10].
Similar extrapolations can be made for other types of well-
known and less-well-known coherent radiation such as maser
output (producing coherent microwave radiation), other types
of high energy particle beam (ion beam, molecular beam,
etc.) sources, with potential applications to diffraction imag-
ing, and coherent X-rays.
In any of these, as the quantity

approaches zero, the integral kernel can be shown to converge
to the product of two delta functions that invert the signs of the
image indices, rendering a full-integrity replica image which,
within a scale factor, is upside-down and backwards. The
zero-value limit can be calculated in various ways, including
mimicking the convergence in a proof of the Fourier trans-
form inverse with a change of variables and accounting for
convergence of the double integral in either an L* or
Schwartz-space on R>.

FIG. 3 depicts a point source of light radiating in an
expanding spherical wavefront incident on an optical ele-
ment, the optical element redirecting the radiating light in a
convergent spherical wave that converges to a point in the
“focus plane,” not yet converged in the “underfocus region,”
and divergent again in the “overfocus region:”

1/b>(1/f=1/a), that is b<1/(1/f-1/a), are underfocus situa-

tions,

1/b=(1/f=1/a), that is b=1/(1/f=1/a), is the focus situation

(obeying the lens law), and

1/b<(1/f=1/a), that is b>1/(1/f-1/a), are overfocus situa-

tions.
FIG. 4 depicts an adaptation of FIG. 3 comprising three point
sources with additional exemplary light rays or particle beam
rays so as to show the differences between exemplary under-
focus and overfocus processes. Careful inspection of FIG. 4
reveals that the geometry of rays in the modeled region
(which includes all underfocus planes) differs from that in the
region past the focus plane (which includes all overfocus
planes).

As taught in [3] and discussed further below, terms in the
above expression can be identified with the 2-dimensional
fractional Fourier transform.

2. Fractional Fourier Transform

Contemporary history of the fractional Fourier transform
and its role in optics from the viewpoint of this patent appli-
cation include the treatments and remarks in [1-3], The inven-
tor’s 1988 paper [3], albeit rarely cited anywhere and hardly
known, is in fact formally credited as first to connect with lens
imaging [2, p. 386]. The calculations in [1] and [3] employed
the Mehler kernel [11]. In [3] the use of the Mehler kernel and
Hermite functions as an integral representation analog to
powers of an infinite-dimensional diagonalizable matrix was
suggested to the inventor by C. Robin Graham; this was done
independently from and without knowledge of [1] or the large
arc of the fractional Fourier transform’s broader history [12-
20], and indeed some five years prior to the fractional Fourier
transform academic publication “wavefront” that began in
1993 which gave rise to the year 2001 book containing [2].
Further fractional Fourier transform history details are richly
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offeredin[2] p. 183-185, albeit not entirely comprehensive as
it does not include use of the operator in white noise calculus,
imaginary power cases of the Hermite semigroup [21],
Brownian motion functionals, and a number of other related
transforms, operators, and calculations. Imaginary power
cases of the Hermite semigroup (related to the Oscillator
Semigroup cited in [2]) will turn out to be relevant to the
application, as will be seen shortly.

An integral representation of the 1-dimensional fractional
Fourier transform (as used in [3] is

—ima/2 r a i3
FeLul0y) = /m fu(x)ezm[;(xnyz)m@)fxym(,f)] dx

which has period 4, acting as

the identity operator for o=0 (and more generally for

mod 4=0),

the Fourier transform for a=1 (and more generally for o

mod 4=1),

the reflection operator (changing the sign of the function

argument from positive to negative) for a=2 (and more
generally for o mod 4=2),

the inverse Fourier transform operator for =3 (and more

generally for o mod 4=3).
A number of other 1-dimensional fractional Fourier trans-
form integral representation definitions exist; for example in
[21] and [22] where the 1-dimensional fractional Fourier
transform integral representation has period 2w rather than
period 4.

The fractional Fourier transform for all real-values of the
power c.is a one-parameter (unitary) operator group, in fact a
commutative periodic group (of period 4 as represented and
defined above) of unitary operators and isomorphic to the
circle group as shown in FIG. 5. Although the fractional
Fourier transform power o is usually taken to be real-valued,
simply grinding through the algebra and trigonometry for the
composition of F* and FP to prove F*FP=F**®, with an appre-
ciation of Euler’ formula and the relations between circular
trigonometric functions and hyperbolic trigonometric func-
tions of real, imaginary, and complex arguments show that the
fractional Fourier transform, within convergence restrictions,
is in fact a one-parameter operator “field” in the sense that,
within convergence restrictions, F*FP=F**F for . and  any
real, imaginary, or complex number. Although not regarded in
this manner, nor in the manner to be employed by the appli-
cation, fractional Fourier transforms of complex order are
considered in [22-26].

Although many signals are 1-dimensional and are compat-
ible with the 1-dimensional Fourier and 1-dimensional Fou-
rier transforms, images are 2-dimensional. For traditional
image analysis and optics, a 2-dimensional Fourier transform
is used. In Cartesian coordinates, the 2-dimensional Fourier
transform can be constructed, using separability properties or
assumptions, as a combination of two 1-dimensional Fourier
transforms. Accordingly, the 2-dimensional fractional Fou-
rier transform in Cartesian coordinates can be given by

e—ma/Z

Felulxy, x)1(y1, y2) = a2

ol
[ [t et g,
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can be constructed (using separability properties or assump-
tions) from the 1-dimensional fractional Fourier transform
above. In polar coordinates, the Hankel and fractional Hankel
transforms provide alternate representations for 2-dimen-
sional fractional Fourier transform. Additionally, identifica-
tions of the fractional Fourier transform that can be made with
the Wigner transform have led to the fractional Fourier trans-
form being considered as merely a special case of the Wigner
transform, particularly in view of the Wigner transform’s
recent centerpiece role (alongside wavelet theory) in time-
frequency analysis and optical image processing.
3. Relating Lens Imaging Integral with Fractional Fourier
Transform

As shown in [3], terms in the equation can be identified
with the 2-dimensional fractional Fourier transform given
above. Via simple term identification, algebra, and trigonom-
etry that the power of the fractional Fourier transform could
be related to (referencing FIG. 2) lens focal length f and
separations distances a and b by expressions such as

VU—@U—M}

a= za.rccos[sgn(f —-a)
7 !

or various variations of this, for example

!

@ = —arccos|
T

as found in [22].
For the lens law case, namely

the 2-dimensional fractional Fourier transform has power o
that calculates to be 2, giving (by way of reflection operators
in each dimension) the expected upside-down backwards
image (as depicted in FIG. 1). When a=b=f| c. calculates to be
1, giving the classical case of Fourier optics. As shown in [3],
these identifications can also be used to identify image size
scaling factors for the focused and non-focused image, and
ratio of these provide the exact magnification factors given in
classical ray-tracing optics.
4. Focus Plane, Underfocus Region, and Overfocus Region
Because o is a 2/x multiple of an arccosine function, in
order for a to take on values between -2 and 2 the arccosine
function argument, i.e., quantities such as

[\/(f—a)(f—b)

. ()

!

are restricted to take on only real-number values between -1
and 1, 1.e., restricted to take on only the trigonometric range of
the arccosine function. However, the term identification pro-
cess described above (and in more detail in [3]), together with
the operator “field” property, implies that the fractional Fou-
rier transform representation should model the behavior in
general placements than the focused situation of FIG. 1 in the
region between the optical element/lens plane. To do this, the
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application provides for the fractional Fourier transform to
take on complex-valued powers as will be explained.

Consider, as an example, an “in focus” case obeying the
lens law.

where a=b=2f. If the observation distance b is reduced
slightly, then the arccosine function argument quantities such
as

[\/(f—a)(f—b)

(=)
f

!

are reduced slightly in magnitude and as such are still real-
number values between -1 and 1. If observation distance b is
increased slightly, then the arccosine function argument
quantities such as

!

[\/(f—a)(f—b)
!

}Or(\/f—a\/f—b]

exceed real-number values between -1 and 1. The math-
ematical implications will be considered shortly, but first
these cases will be considered in geometric context via FIG.
3 and FIG. 4.

As described above, FIG. 3 depicts a point source of light
radiating in an expanding spherical wavefront incident on an
optical element, the optical element redirecting the radiating
light in a convergent spherical wave that converges to a point
in the “focus plane,” not yet converged in the “underfocus
region,” and divergent again in the “overfocus region.” FIG. 4
depicts an adaptation of FIG. 3 comprising three point
sources with additional exemplary light rays so as to show the
differences between exemplary underfocus and overfocus
processes. Careful inspection of FIG. 4 reveals that the geom-
etry of rays in the modeled region (which includes all under-
focus planes) differs from that in the region past the focus
plane (which includes all overfocus planes). For the example
considered above:

b<2 are underfocus situations,

b=2 is the focus situation (obeying the lens law), and

b>2 are overfocus situations.

Returning now to the mathematical implications, for over-
focus situations the argument of arccos exceeds magnitude 1.
This forces arccos to take on complex values. FIG. 6 shows an
example of the extended-domain behavior of arccosine for
arguments, in particular taking on values between -2 and +2,
the solid line representing the real part of the arccosine func-
tion and the dashed line representing the imaginary part. The
extended-domain behavior is both quite elegant and also quite
useful; in particular, when the argument of arccosine exceeds
a value of 1, the real part of arccosine takes on a fixed real-
value of & while the imaginary value takes on a monotoni-
cally-decreasing negative value departing from zero with
growth resembling that of a logarithm.

Returning to the a=2f example for varying values of b, F1G.
7 shows example behavior of the arccosine fractional Fourier
power formula, such as in [3], for b taking on values between
1 and 3. When b exceeds a value of 2f the real part of the
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expression for o takes on a fixed real-value of 2 (correspond-
ing to the reflection operator) while the imaginary value takes
on a gently monotonically-decreasing negative value depart-
ing from zero. If complex-valued o is represented as a=F+iy
where [} and vy are real-valued, then

Fo=FP+iv=pfpit

so in the overfocus case F behaves like F>*"'=F?F", that is
the reflection operator composed with the fractional Fourier
transform raised to a purely imaginary power that departing
from zero as a gently monotonically-decreasing negative
value.

To generalize the behavior of the example, one can set a=A
fand b=B f, in which case the lens law becomes

111
ATHTT

which rationalizes to

B A _AB
ABf ~ ABf ~ ABf

simplifying to the condition B+ A=AB, or B+ A-AB=0. This
is just arestatement of the lens law studied earlier with respect
to FIG. 3 and FIG. 4, so in terms of the earlier classifications:

1/B>(1-1/A), that is B<1/(1-1/A), equivalent to B+A-
AB<O0, are underfocus situations,
1/B=(1-1/A), that is B=1/(1-1/A), equivalent to B+A-
AB=0, is the focus situation (obeying the lens law), and
1/B<(1-1/A), that is B>1/(1-1/A), equivalent to B+A-
AB>0, are overfocus situations.
Multiplying through by f in each of the conditions above
gives:
Bf+Af-ABf<0 are underfocus situations,
Bf+Af-ABf=0 is the focus situation (obeying the lens
law), and
Bf+Af-ABf>0 are overfocus situations.

Adding f* to both sides in each of the conditions above gives:
FP+Bf+ Af-ABf<f® are underfocus situations,
2+Bf+ Af- ABf-f* is the focus situation (obeying the lens

law), and
2+Bf+ Af-ABT>1* are overfocus situations.

Factoring and dividing by f* to both sides in each of the

conditions above gives:

(f+8)(f+A)/ <1 are underfocus situations,

(f+8)(f+A) =1 is the focus situation (obeying the lens
law), and

(f+8)(f+A)1>>1 are overfocus situations.

Taking the square root of both sides gives conditions where

quantities such as

!

[\/(f—a)(f—b)
!

(=)

being less than, equal to, or greater than 1 correspond, respec-
tively, to underfocus situations, focus situation (obeying the
lens law), and overfocus situations, for example:
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V(f-a(f-b) -
f < 1 are underfocus situations,
VU =a =0 | _
f
1 is the focus situation (obeying the lens law), and

V(f-a(f-b) -

f > | are overfocus situations.

5. Mis-Focus Correction Theory

The focus correction technology and theory has described
in a sequence of issued and pending patents by the inventor,
including U.S. Pat. Nos. 6,687,418; 7,054,504; 7,203,377,
7,039,252; 7,627,195; 7,697,777 and pending U.S. patent
application Ser. Nos. 12/101,878 and 12/754,587. The
approach is briefly reviewed here and then explicitly treated
separately for underfocus and overfocus situations.

FIG. 8 depicts an adaptation of the arrangement depicted
earlier in FIG. 3 and FIG. 4 adapted for discussion of mis-
focus correction. If the separation distance between the lens
and the observation plane is such that the lens law is satisfied,
i.e., a separation distance of 1/(1/f-1/a), then the optics
behaves as the two-dimensional fractional Fourier transform
with power 2, i.e., a reflection operator that reverses the sign
of the spatial argument of each image point of both dimen-
sions of the rendered focused image. If the separation dis-
tance is less than 1/(1/f=1/a), then the optics is in an under-
focus situation and accordingly behaves as the two-
dimensional fractional Fourier transform with a real-valued
power that is less than 2. In such cases, an additional frac-
tional Fourier operation can be used to correct the optics
situation resulting from the difference in the underfocus sepa-
ration distance and the focus separation distance 1/(1/f-1/a).
This follows from the group property of the fractional Fourier
transform for real-valued powers:

FPrope=f2,

If the image rendered in the underfocus situation is
recorded, its phase information is, with all but the most spe-
cialized of situations, lost. However, should it be that if the
image did not have missing phase information F*—for some
unknown value of a—would be proper mis-focus correction,
then by the group property the underfocus operation must be
2~ If F*~* can be calculated, then the phase information of
F~* can be extracted and imposed (with proper registration)
on the recorded image. Thus an iterative procedure or algo-
rithm can be created to close in and converge to a correction
in the underfocused case:

Select a small trial positive real-value of o

Begin a chain of calculations depending upon o

Calculate Fo and the phase information of F2~¢

Impose the phase information of F>~* on the recorded
image and apply Fa

Determine if the mis-focus has been adequately
improved

If the mis-focus has not been adequately improved, the
procedure is complete
Ifthe mis-focus has not been adequately improved, select a
slightly more positive trial real-number value of a and
perform the chain of calculations again.
FIG. 9 and depicts an exemplary image information flow for
a focus correction system. FIG. 10 collectively depicts an
exemplary algorithmic structure for a focus correction sys-
tem.
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In the case of an overfocused image, the “field” property of
the fractional Fourier transform for complex-valued powers
(instead of the group property for a real) is used, i.e.

FPefFe=F2,

where a is real, imaginary, or complex. Since the overfocus
condition is equivalent to F**Y for some unknown negative
real value of'y, the corresponding mis-focus correction would
= because

FRHv 2

Thus an iterative procedure or algorithm can be created to
close in and converge to a correction in the overfocused case:

Select a small trial negative real-value of 'y

Begin a chain of calculations depending upon v:

Calculate F~ and the phase information of F>**

Impose the phase information of F>**" on the recorded
image and apply F~

Determine if the mis-focus has been adequately
improved

If the mis-focus has not been adequately improved, the

procedure is complete

If'the mis-focus has not been adequately improved, select a

slightly more negative trial negative real-number value
of [J and perform the chain of calculations again.

The arrangements of FIG. 9 and FIG. 10 also support the
above described overfocus case. The underfocus and overfo-
cus procedures can be combined in various ways. For
example, a first one or more iterations for the underfocus case
can be tried using small real positive values of a, and then one
or more iterations for the overfocus case can be tried using
small real negative values of g (equivalent to small imaginary
values of a). In one approach, the underfocus trials complete
and then the overfocus trials are started. In another approach,
underfocus trials and overfocus trials are interleaved.

As aremark, it is interesting to note that the purely imagi-
nary powers of the fractional Fourier transform used to cor-
rect the overfocus case convert the circular trigonometric
cotangent and cosecant functions in the integral representa-
tion of the fractional Fourier transform into hyperbolic cotan-
gent and hyperbolic cosecant functions. The format of the
fractional Fourier transform wherein the circular trigonomet-
ric cotangent and cosecant functions are respectively replaced
with hyperbolic cotangent and hyperbolic cosecant functions
is in fact the Hermite Semigroup [21] (which, by virtue of the
remarks made earlier, can in fact be treated as an operator
group or operator “field;” it is also sometimes associated with
the Oscillator Semigroup [21]).

Thus, thanks to the elegant complex-value behavior of the
extended-domain arccosine function, the mis-focus correc-
tion operation for underfocus is based on the fractional Fou-
rier transform and the mis-focus correction for overfocus is
based on the Hermite Semigroup.

6. Numerical Implementation ofthe Fractional Fourier Trans-
form for Digital Image Processing

Thus far the development has been in terms of the integral
representation of the continuous fractional Fourier transform.
The continuous fractional Fourier transform can be approxi-
mated by the discrete fractional Fourier transform, and the
fractional Fourier transform can be executed on a numerical
processor such as a computer or DSP chip. Accordingly,
attention is now directed to developing the 1-dimensional
discrete fractional Fourier transform as a matrix operator that
can be executed on a numerical processor, expanding it to a
2-dimensional discrete fractional Fourier transform, accom-
modating the underfocus and overfocus cases, and utilizing
these to correct mis-focus in at least a portion of an image file,
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the image file comprising a representation of an image cre-
ated by coherent imaging processes.

There are various approaches and definitions and approxi-
mations to the notion of a discrete fractional Fourier trans-
form, for example but hardly limited to [27-30]. All the
known discrete fractional Fourier transform constructions to
the inventor have one or more aspects of concern, loose ends,
not well-defined, etc. Although the application provides for
the use of any discrete fractional Fourier transform con-
structed from orthogonal eigenvectors and which has been
centered (for example using the row and column barrel-shift
centering operations to be described or other methods taught
in the patents and patent applications to be mentioned next),
the present application provides another construction
designed to nicely fit the approaches and needs of the appli-
cation.

In particular, the discrete fractional Fourier transform and
centered discrete fractional Fourier transform have described
in a sequence of issued patents and pending patent applica-
tions by the inventor, including U.S. Pat. Nos. 6,687,418;
7,054,504; 7,203,377, 7,039,252; 7,627,195; 7,697,777 and
pending U.S. patent application Ser. Nos. 12/101,878 and
12/754,587. The concepts are briefly reviewed and additional
details pertaining to the present application are provided.

The 1-dimensional discrete Fourier transform (“DFT”)

N-1 i
Ly
X, = Z X,e N

n=0

can be used to approximate the 1-dimensional “continuous”
(integral representation integrated over contiguous portions
of'the real line or complex plane) Fourier transform, but must
be used in this way with care (such “care” typically simply
band-limiting the applied image to avoid aliasing). The 1-di-
mensional DFT can be represented as a matrix; in unitary-
matrix normalization a representation is:

1 1 1 1

1 eZmi/L e4mi/L eZmi(L—l)/L

1 1 e4mi/L eSmi/L e4mi(L—l)/L
vL

1 U-DIL Ami(l-DIL e2mi(L—1)2/L

The theory of DFT matrix eigenvectors is lengthy [31-38]
and likely still under development. As with the continuous
Fourier transform, the DFT matrix is diagonalizable (no Jor-
dan blocks) despite having, for all DFT matrices of various
orders, four eigenvalues of

{1,i-1,i}.
as shown in [31-38] and [39]. The DFT matrix diagonaliza-
tion permits a canonical representation

DFT=P !AP

where P is the matrix of eigenvectors and A is a diagonal
matrix of correspondingly-ordered eigenvalues. Taking inte-
ger-valued powers M of the DFT matrix gives the product of
M terms

DFTM=(P'AP)... P'AP).
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Since P P~*=1, the M-1 (P P~!) terms collapse to the Identity
matrix, giving

DFTM=p~' AMp

where A* calculates to be a diagonal matrix whose diagonal
elements are the M™ power of the diagonal elements of A .
Using the same idea for matrix G having matrix of eigenvec-
tors P but diagonal matrix D

G=P'DP.
solving for D
D=PGP!,

taking integer-valued powers K of the matrix D gives the
product of K terms

DE=(PGP™Y) ... (PGP™Y).

Since P~! P=1, the K-1 (P~! P) terms collapse to the Identity
matrix, giving

DF=pGEp~!

Setting G*=DFT* and D*=A™ gives
AM=pDFT¥p-!

which implies G=DFT™* and D= "%, giving
DFT*=PA P

as a representation of rational fractional powers of the DFT
matrix. Using continuity properties and analytic continua-
tion, the relation extends to all finite real, imaginary, or com-
plex values of a.. This outcome can also be found throughout
the literature, for example in [29] page 15.

As suggested earlier, there are also a number of alternate
fractional power DFT approaches that have been suggested,
for example but hardly limited to [27-30] and [40-42]. Again
the application provides for the use of any discrete fractional
Fourier transform constructed from orthogonal eigenvectors
and which has been centered (the centering to be discussed
shortly), but here the discussion continues with another con-
struction designed to nicely fit the approaches and needs of
the application.

The DFT matrix of order n is an n-by-n matrix that maps a
vector in R” to another vector in either R” (as suggested in
FIG. 11a) or, far more typically, C” (as suggested in FIG.
115). Most generally, the DFT matrix of order n is an n-by-n
matrix that maps a vector in C” to another vector in either C”
(as suggested in FIG. 11¢). Returning to the four repeating
eigenvalues

{1,-i,-1,i}
of the DFT matrix, these can be represented as

{2
Each of the four eigenvalues is associated with its own dis-
joint (except for the origin) subspace of the range of the DFT
matrix (for example C”), each subspaces spanned by the set of
eigenvectors sharing the associated eigenvalue. Within each
of these subspaces, the eigenvalue associated with the sub-
space is associated for every eigenvector in that subspace.

The multiplicity of the four repeated eigenvalues are well

known—for example, in [36] which (see equation 1 therein)
defines the DFT with matrix elements whose exponential
function arguments are negative imaginary multiples of the
variables, and [39] which (see equation 12 therein) defines the
DFT with matrix elements whose exponential function argu-
ments are positive imaginary multiples of the variables. For
the DFT with matrix elements whose exponential function
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arguments are negative imaginary multiples of the variables
(as in [36]), the multiplicities of the four repeated eigenvalues
are given by

n

m(+1)=Floor[4]+1

i n+1
m(=i) = Floor{ ]

4
L=l n+2
m(—-1)= oor{ 7 ]
A Fl n+3 L
m(+i) = oor{ 7 ]—

FIG. 12a provides a table of example values of these multi-
plicities for example values of DFT order n. For the DFT with
matrix elements whose exponential function arguments are
positive imaginary multiples of the variables (as in [39]), the
multiplicities of the four repeated eigenvalues are given by

n

m(1)=Floor[4]+1

A Fl n+1
m(i) = oor{ 7 ]

m(=1)= Floor{nzz]

A Fl n+3 L
m(—i) = oor{ 7 ]—

FIG. 1254 provides a table of example values of these multi-
plicities for example values of DFT order n.

The traditional DFT, like the continuous Fourier transform,
has eigenvectors {1, -1, -1, i} which can be represented as
{(-}°, (4}, (-}, (=i}?}. Because of the Hermite function
details [11] in the case of the continuous Fourier transform, it
is readily possible to represent “i”” as ¢™2 and “~i” as "% s0
that in a well-defined manner the fractional powers no of “1”
and “~i” can be represented as ¢”*2 and as e"""*"2, How-
ever, as seen in the multiplicity tables and in the structuring
and orthogonalization of the eigenvectors within subspaces to
be described below, the situation is not as clear for the discrete
fractional Fourier transform case. For a given eigenvalue
equal to €”%™2 or e"*"'2 for some n=k and ****'¢ multiplicity
m, the candidate powers of n are

n=k+4m-1).

Although other arrangements can be used, in an implemen-
tation the lower values attained by n are associated with the
eigenvectors with the fewest fluctuations and zero-crossings
from element to element within the eigenvector, continuing
monotonically so that higher values attained by n are associ-
ated with the eigenvectors with the fewest fluctuations and
zero-crossings from element to element within the eigenvec-
tor. This is analogous to the natural assignment in the Hermite
function case as the Hermite functions of order n experience
monotonically increasing fluctuations and zero-crossings as
n increases.
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The partition of the range of the DFT matrix (for example
C") into separate subspaces, each subspace associated with
one of the eigenvalue and spanned by the set of eigenvectors
sharing that eigenvalue, is depicted in FIG. 134 and is for-
mally called a spectral decomposition. The mapping from the
full range of the DFT matrix to a particular subspace is called
a “projector,” “projection,” “projection operator,” or “projec-
tor matrix” in various setting according to context and repre-
sentational settings. For example, if the subspace associated
with (—iY is denoted as the j* subspace, that subspace has and
associated projector P,. As the DFT matrix has repeated
eigenvalues represented as {(~1}°, (-i}!, (-i}?, (-i}?}, in this
approach j takes on values from the set {0, 1, 2, 3}. The four
subspace mappings are represented in FIG. 13a as each of the
four projectors {P,, P,, P,, P;} operating on C".

Bach of the four projectors {P,, P, P,, P,} for the DFT or
order n can be represented as an n-by-n matrix. The rank of
each such matrix P, is given by m((-iY). In such a represen-
tation, the DFT matrix, here represented as @, is the sum of
these subspaces multiplied by the eigenvalue for the sub-
space.

29 <

<I>=23:iin

J=0

The spectral decomposition can be represented more
abstractly, i.e., not necessarily in the form of an n-by-n
matrix, as in the representations shown in FIG. 13a as well as
the other representations shown in FIGS. 135-13e.

Various sums and products of the projector matrices for the
DFT matrix have a number of different properties, some of
which stem from the fact that for the DFT matrix of order n

Wrd)=I

so that the DFT matrix of order n scaled by the square root of
n behaves as an n” root of unity. These can be used, for
example as shown in [39], to explicitly calculate closed-form
solutions for DFT eigenvectors. This will be used shortly.
However, the traditional DFT matrix is not directly suitable
for modeling optics effects without some reorganization as
discussed below and in the inventor’s U.S. Pat. No. 7,039,252
and pending U.S. patent application Ser. No. 12/101,878.
6.1 Centering of the Discrete Fractional Fourier Transform

It is critical when constructing fractional powers of the
DFT matrix or other 1-sided constructions neglect the fact
that the zero-argument exponential terms are along the edges
of'the matrix and that these not only do not correspond to the
symmetric-centering of the continuous Fourier transform nor
(more importantly) to the center-symmetric ray-tracing
geometry clearly seen in FIG. 1, FIG. 2, and FIG. 3. Instead,
the DFT matrix, or DFT sum, must be shifted and of odd-
integer N so as to have centered zero-argument exponential
terms. This is treated in the inventor’s U.S. Pat. No. 7,039,252
and pending U.S. patent application Ser. No. 12/101,878 but
summarized briefly here.

First the centering of a 1-dimensional DFT matrix is con-
sidered. The centered DFT matrix can be obtained by per-
forming “barrel roll” operations of a degree determined by the
order of the DFT matrix on the rows and columns of'a DFT
matrix, and it is shown that the same barrel roll operations are
inherited into the canonical form of the centered DFT matrix.
This permits the creation of closed-form eigenvectors for the
centered DFT matrix by performing a barrel roll operation on
each of the closed-form eigenvectors of the traditional DFT
matrix. This allows for the creation of a centered 1-dimen-
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sional fractional Fourier transform matrix. Then, for the pro-
cessing of images, two centered 1-dimensional fractional
Fourier transform matrices, each of which can be of different
orders, are structured for combined use on the image—for
example, utilizing different sets of array indices (one set of
indices for each image dimension), a 4-dimensional tensor
representation, separate centered 1-dimensional fractional
Fourier transform matrix operations for each image dimen-
sion, etc.

For the DFT of order n whose exponential function argu-
ments are negative imaginary multiples of the variables (as in
[36]), the DFT invokes the following operation on a n-ele-
ment vector {x,,...,x,}:

2kt b)nta)

1Nt
Xy =— > x,e

The corresponding matrix representation is given by

|y e
7|,

1 E—Zmi(n—l)(k—l)

®= e~ ili=1n=1)

_2rith—1)2
eme(nl)

For the DFT of order n whose exponential function argu-
ments are positive imaginary multiples of the variables (as in
[39]), the DFT invokes the following operation on a n-ele-
ment vector {x,,...,x,}:

=oomg,,
anew'( +b)(n+a)

=

X

The corresponding matrix representation is given by

LIy gten

ﬁ

1 eZmi(n—l)(k—l)

®= e2mi(j—l)(n—l)

in—1)2
eme(n 1y

The fact that the DFT sum and DFT matrix, as well as opera-
tions using these, can be calculated by a computer as is well
known to one skilled in the art.

Within these expressions, the comprised terms

e—zﬂﬁi(ker)(nJra) and e%‘*(km)mm)

are periodic both in row k and column n directions as depicted
in FIG. 14 (the “Fourier ring” form of which is adapted from
[43]).

Because of periodicity of the terms in the DFT matrix in
both the row and column directions, an added right column or
added bottom row continuing the DFT matrix term formula of
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1 .
DFTyy(p. @) = g 2milp=1g-VJ/L
VL

1 .
DFTwy(p, ) = <=7t s
VI

or
would repeat, respectively, the matrix left column or first row,
resulting in the structure of FIG. 15 (the “Fourier torus” form
of which is adapted from [43]). The centered DFT matrix of
odd-order would be of the form shown in FIG. 16; this com-
prises various orientation and scaling transformations of the

traditional (N+1)/2 DFT matrix: s

1 1 1 1
1 ik AL /L
1 1 M LT amEl 20
(L+1)
2 2
1 ezmif—L;J JL g &y, o L / L

25

Alternatively, a linear algebra method for zero-centering of
the DFT and/or of DFT eigenvectors is now presented. This
approach also creates machinery useful in proving that row
and column barrel-shift operations on the DFT matrix can
also be applied to the eigenvector matrix and diagonal eigen-
value matrix of the canonical representation for the DFT
matrix, and the subsequently shifted eigenvector matrix and
diagonal eigenvalue matrix form the canonical representation
for the shifted DFT matrix; this fact is first proved immedi-
ately below.

Let H be a square n-by-n diagonalizable non-singular
matrix with eigenvectors arranged to form matrix P with
correspondingly arranged eigenvalues

40

M0 0 0
0 A 0 0
A A)andA=|0 0 A ... 0]
. 45
000 0 ... A,

Then H can be represented as H=PAP~".

Let S be a (forward or reverse) shift matrix (that is, arow or
a column permutation of n-by-n identity matrix). Let G be the
matrix with rows and columns shifted by S: G=SHS™

G =SHS!
=S(PAPHS™
SPIAIP 5 (since [ = §57)
=SPSTIHAEIS) P
(SPSHY(SASHsPIs™)

55

60

(spsy ! = spls!
Since (AB)™' = B'A™!

(Proof: (AB)"'AB=B'A"'AB=B"'IB=B"'B=1) 65
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Therefore the shifted matrix G, i.e., the shifted version of the
matrix H, has a canonical form comprising a shifted version
(SP) of the P matrix (the matrix of eigenvectors of matrix H)
and correspondingly shifted version (SA) of A (the diagonal
matrix of associated eigenvalues of matrix H).

With this establish, the centered DFT matrix of order n (n
odd) can be readily calculated on a computer. Further, given a
traditional DFT matrix of order n (n odd), the centered DFT
matrix can be calculated from it by a barrel shift of (n-1)/2
rows and (n-1)/2 columns. This centering transformation can
also be readily calculated on a computer. FIG. 17 depicts this
example construction of a 1-dimensional centered fractional
discrete Fourier matrix of order n.

Yet further, from the above proof, the eigenvectors of the
centered DFT matrix of order n (n odd) can be calculated from
the eigenvectors of the DFT matrix of order n by a barrel shift
of (n-1)/2 rows and (n—1)/2 columns. FIG. 18 depicts this
example construction of the P (eigenvector) matrix associated
with a 1-dimensional centered fractional discrete Fourier
matrix of order n.

Thus, closed-form eigenvectors for the centered DFT
matrix can be obtained by performing a barrel roll operation
on each of the closed-form eigenvectors of the traditional
DFT matrix. This allows for the creation of a centered 1-di-
mensional fractional Fourier transform matrix.

For the processing of images, two centered 1-dimensional
fractional Fourier transform matrices, each of which can be of
different orders, are structured for combined use on the
image—for example, utilizing different sets of array indices
(one set of indices for each image dimension), a 4-dimen-
sional tensor representation, separate centered 1-dimensional
fractional Fourier transform matrix operations for each image
dimension, etc.

As a closing remark for this section, it is noted that in the
earlier literature that various forms of shifted versions of the
DFT matrix have been proposed and studied, for example
[44-46], and in some cases the eigenvectors of the shifted
DFT have been considered [46]. However, the shifting of
DEFTs of odd-order to create centered DFTs, or other methods
or forms of centered DFTs have not been explicitly treated,
and further their essential use in computation optics and
optics modeling has not been developed other than in U.S.
Pat. No. 7,039,252 filed Nov. 2, 2004 and associated U.S.
patent application Ser. No. 12/101,878.

6.2 Orthogonal Eigenvectors within and Among Subspaces

The application provides for closed-form representations
of DFT eigenvectors, imposes high-accuracy orthonormal-
ization with algorithms including iterated Gram-Schmidt
applications, and provides zero-centering using linear alge-
bra techniques.

The exemplary approach used here is one adapted from the
2001 paper of Matveev [39] which can be used to obtain a
complete set of orthogonal eigenvectors for the DFT or order
nin closed-form. Alternatively, the approach of Pie, Wen, and
Ding published in 2008 [41] could be employed instead of
that of [39] as the [41] algorithm also produces a complete set
of orthogonal eigenvectors for the DFT or order n in closed-
form. As one skilled in the art can readily implement each of
these, and the 2008 Pie, Wen, and Ding paper is well-known
while the 7-year earlier 2001 Matveev paper is less well-
known, the following exemplary approach will be provided
here. It is anticipated by the application, however, that alter-
natively the [41] algorithm or other approach providing a
complete set of orthogonal eigenvectors for the DFT or order
n in closed-form can be used; accordingly, these alternate
approaches are anticipated by and provided for by the appli-
cation.
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There are a few missing details and other issues in the
Matveev paper [39]; these are corrected and further explained
in the material that follows. Additionally, the Matveev paper
[39] employs a DFT definition with matrix elements whose
exponential function arguments are positive imaginary mul-
tiples of the variables. The main thread of the discussion
below follows this definition, and in occasional places the
corresponding result for a DFT with matrix elements whose
exponential function arguments are negative imaginary mul-
tiples of the variables (as in [36]) are provided,

It is again noted that there are other approaches towards
closed-form expressions for eigenvectors of the DFT, for
example [40,42], but many of these pertain to various alter-
native constructions of the DFT (for example sampling of
Hermite functions or Harper functions without regards to
aliasing issues) and/or have other implementation challenges.

The four subspaces of the spectral decomposition describe
earlier, together with the associated repeated eigenvalues,
form a spectral decomposition of the DFT matrix into four
projector matrices {P}:

<I>=Zsli"Pj

J=0

The four projector matrices {P,} are given by:

3
= %Z(—i)j"(b/‘.
k=0

More explicitly

=25 o
4k:O
1n:1
- ZZ (=
k=0
1n:l
Pr= g (-
k=0
1n:1
- ZZ (PPt
k=0

These can be calculated by a computer as is clear to on skilled
in the art. The rank of each projector matrix is given by the
multiplicity of its associated eigenvalue. The projector matri-
ces amount to a partitioning of the eigenvectors of the DFT
matrix. Following the general spirit of the notation in [39] the
eigenvectors for each of the projector matrices {Pj} will be
respectively denoted by

VO,M) o, . .. m(1)}

VL) eto, . .. me}

V2,1 meqo, . . . m-1}

VB 1) mefo, . . . m(-i2}
Using properties of the projector matrices, for example as
described in [39], these eigenvector representations can be
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analytically determined in a way that can be evaluated on a
computer. In the approach of [39], these can be given by

g

_im
= l)sk‘l ]
\/—

1
vk, m) = (6Jm+( 1) On—jm \/;

+( )
\/—

where

1 if j=k
8y = e

0 if j#k

Each of the four subspaces eigenvectors can be calculated as:

This procedure is summarized in FIG. 19.

For a DFT with matrix elements whose exponential func-
tion arguments are negative imaginary multiples of the vari-
ables (as in [36]), the corresponding eigenvector representa-
tions can be given:

+HM¥ = Z ]
S

vk, m) = 1(51,,1+( ¥, Jm—“'(l)

N

and the general form of the procedure summarized in FIG. 19
can be used.

The eigenvectors thus far are linearly independent, fully
span their respective subspaces, and collectively span the
range of the DFT matrix. However, they are not orthogonal.
There are at least two approaches to orthogonalizing the
complete collection of linearly independent eigenvectors pro-
vided:

The first approach employs the use of the Gram-Schmidt
procedures. This is actually suggested in Matveev’s
paper ([39] page 641) for orders less than or equal to 4.
However, especially for a DFT matrix or order greater
roughly 100 or larger, even high-quality numerical
Gram-Schmidt algorithm improve but hardly make a
noticeable step in improving the orthogonality of the
eigenvector collection; thus the direction of the inequal-
ity may well be a typo. Regardless, the next section
practically addresses this by employing iterated appli-
cations of a Gram-Schmidt algorithm.

The second approach employs an analytical construction
of the orthogonality utilizing Gramian calculations
employing the evaluation of determinants. These can be
calculated on a computer, readily so for languages or
numerical processors that provide a primitive function
for the numerical evaluation of determinants.

These are considered in the next two subsections.
6.2.1 Iterated Gram-Schmidt

The application provides for high-accuracy orthonormal-
ization with algorithms including iterated applications of a
Gram-Schmidt algorithm. In one approach, the eigenvectors
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are first subjected to a linear independence test as a precau-
tionary check. This can, for example, be done by evaluating
the determinant of the matrix of eigenvalues. In some imple-
mentations, for example where linear independence is
deemed as ensured, this linear independence confirmation
step can be skipped. Next each eigenvector is normalized by
dividing each element by the scalar quantity obtained from
the inner product or the vector with itself. In another imple-
mentation such normalization can be deferred or skipped
altogether.

Next, the normalized (or non-normalized) collection of
eigenvectors are provided to an iterative loop providing one or
more applications of a high-performance Gram-Schmidt
algorithm. For example, in each iteration, the high-perfor-
mance Gram-Schmidt algorithm is applied to a current col-
lection of eigenvectors. After the application of the algorithm,
pairwise inner products are taken among all the resulting
vectors produced by the application of the Schmidt algorithm,
and each inner product is used in a metric of orthogonality.
For example, a metric of orthogonality can simple sum
together the values produced by each of the pairwise inner
products. The value of the metric of orthogonality is com-
pared to a threshold, and if the threshold is exceeded those
vectors are subjected to a next application of the Gram-
Schmidt algorithm. It is found, for example, to obtain good
degrees of orthogonality for collections of n linearly indepen-
dent eigenvectors (each comprising n elements) for a DFT of
ordern, with n or the order of 100-200, some 9 to 12 iterations
minimum can be needed, even with a high performance
Gram-Schmidt algorithm performed with precision math.

In one example implementation, each of the four subspaces
is separately processed by the iterative Gram-Schmidt algo-
rithm, motivated by the fact that each of the subspaces are by
construction mutually orthogonal. In another example, all of
the eigenvectors are collectively processed by the iterative
Gram-Schmidt algorithm.

An example path through iterated applications of a Gram-
Schmidt algorithm for each image dimension, the application
of the aforedescribed centering operations, and construction
of the two 1-dimensional discrete fractional Fourier trans-
form matrices is provided in FIG. 20. Other approaches are of
course possible as is clear to one skilled in the art; these are
anticipated and provided for by the application.

6.2.2 Analytically Constructed Orthogonality

On pages 641-642, Matveev [39] provides an analytical
construction imposing orthogonality on the complete collec-
tion of linearly independent eigenvectors utilizing Gramian
calculations employing the evaluation of determinants. These
can be calculated on a computer, readily so for languages or
numerical processors that provide a primitive function for the
numerical evaluation of determinants.

For cases where k is odd (i.e., k=1 or k=3), the associated
closed-form eigenvectors are calculated via the Gramian for-
mulas

e; (k) =v(0, k),
k 0, k
eall) = pook) v(0, k)
pro(k) (1, k)
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-continued
Poo POy -1 v(0, k)
enp(k) =
Pmy=20 - Pm-2mr-2  vim(k) =2, k)
Pmy-L - Pmio-Lmgy2 Vim(k) =1, k)

For where k is even (i.e., k=0 or k=2), the associated
closed-form eigenvectors are calculated via the Gramian for-
mulas

e (k) =v(1, k),
puk) v(l, k)
er(k) =
patk) v(2, k)
P Plomy, v(1, k)
emo (k) =
Prmg=11 - Pmto-Lmo-1  Vimk) =1, k)
Pom(k) - Pm-tm@-1 v(m(k), k)

This procedure is summarized in FI1G. 21.

In one example implementation the orthogonality of the
resulting analytically produced orthogonal eigenvectors is
improved further by one or more applications of a Gram-
Schmidt algorithm. Here, FIG. 20 provides an example path
through iterated applications of a Gram-Schmidt algorithm
for each image dimension, the application of the afore-
described centering operations, and construction of the two
1-dimensional discrete fractional Fourier transform matrices.
The two centered 1-dimensional fractional Fourier transform
matrices, each of which can be of different orders, are struc-
tured for combined use on the image—for example, utilizing
different sets of array indices (one set of indices for each
image dimension), a 4-dimensional tensor representation,
separate centered 1-dimensional fractional Fourier transform
matrix operations for each image dimension, etc.

In one approach to the above example implementations,
each of'the four subspaces could separately processed by the
iterative Gram-Schmidt algorithm, motivated by the fact that
each of the subspaces are by construction mutually orthogo-
nal. In another example, all of the eigenvectors are collec-
tively processed by the iterative Gram-Schmidt algorithm.

In another example implementation the orthogonality of
the resulting analytically produced orthogonal eigenvectors
is deemed adequate. For this case, FIG. 22 provides an
example path through iterated applications of a Gram-
Schmidt algorithm for each image dimension, the application
of the aforedescribed centering operations, and construction
of the two 1-dimensional discrete fractional Fourier trans-
form matrices.

In either case, the two centered 1-dimensional fractional
Fourier transform matrices, each of which can be of different
orders, are structured for combined use on the image—for
example, utilizing different sets of array indices (one set of
indices for each image dimension), a 4-dimensional tensor
representation, separate centered 1-dimensional fractional
Fourier transform matrix operations for each image dimen-
sion, etc.

7. Mis-Focus Correction Using a Numerical Processor

The focus correction technology and theory has described
in a sequence of issued patents and pending patent applica-
tions by the inventor, including U.S. Pat. Nos. 6,687,418;
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7,054,504, 7,203,377 7,039,252; 7,627,195; 7,697,777 and
pending U.S. patent application Ser. Nos. 12/101,878 and
12/754,587. FIG. 9 and FIG. 10 collectively depict an exem-
plary design for a focus correction system in keeping with the
descriptions provided earlier. As shown and suggested in FI1G.
5 and FIG. 8, all operators involved are invertible and thus,
with iteration-defined phase restoration applied to the stored
original image, all transformations in the chain to the original
image are invertible and thus there is no information loss.

FIG. 23 depicts the general framework for iteratively

applying the real or imaginary values of the power variable c.
As described earlier, the underfocus and overfocus proce-
dures can be combined in various ways. For example, a first
one or more iterations for the underfocus case can be tried
using small real positive values of a, and then one or more
iterations for the overfocus case can be tried using small real
negative values of g (equivalent to small imaginary values of
a). In one approach, the underfocus trials complete and then
the overfocus trials are started. In another approach, under-
focus trials and overfocus trials are interleaved.

7.1 Underfocus Case

As discussed above, the fractional Fourier transform for all
real-values of the power a is indeed an operator group.
As such every element in the group has an inverse. This
is used as follows:

If the coherent-radiation image (including its phase infor-
mation) is underfocused, the optical process can be mod-
eled by a power @, 1., %0, Of the (fractional) Fourier
transform lying between 0 and 2;

By operating on an coherent-radiation underfocused image
(including its phase information) with a fractional Fou-
rier transform of power (2-a underfocus), a Fourier
transform of power 2 (focus condition) results;

A stored underfocused coherent-radiation image almost
assuredly has no usable phase information, but if its
mis-focus can be corrected by operating on it with a
Fourier transform of power (2-a underfocus), then the
underfocused coherent-radiation image must have had a
phase condition equivalent to that of a fractional Fourier
transform of power o underfocus. This allows for:

a well-defined phase restoration and, in turn as a result a
single-parameter iterator that can be used in a hand or
automatically adjusted underfocus correction system;

Symmetry and anti-symmetry relations internal to the
structure of the fractional Fourier transform provide
ways to transform the phase of fractional Fourier trans-
form of power a, underfocus into the phase of fractional
Fourier transform of power 2-a. (underfocus)

Except for very rare contrived pathologies (or mixed
depth-of-field artifacts), sharp edges will only result
when the focus correction system produces a focused
image;

In an automated system, a spatial high-pass filter feeding
an energy measurement element can be used to measure
the degree of high-frequency energy (corresponding to
the degree of sharpness) in the produced image; this can
be used as an observer to create an automatic feedback-
driven focusing control system.

7.2 Overfocus Case

In the case of an overfocused image, the “field” property of
the fractional Fourier transform for complex-valued powers
(instead of the group property for a real) is used, i.e.

FProfe=f2,
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where o is real, imaginary, or complex. Since the overfocus
condition is equivalent to F**Y for some unknown negative
real value of'y, the corresponding mis-focus correction would
F~ because

FRH N2

Thus, as described earlier, an iterative procedure or algorithm
can be created to close in and converge to a correction in the
overfocused case:

Select a small trial negative real-value of y
Begin a chain of calculations depending upon y:
Calculate F™ and the phase information of F>*

Impose the phase information of F>* on the recorded
image and apply F~*°

Determine if the mis-focus has been adequately
improved

If the mis-focus has not been adequately improved, the
procedure is complete

If the mis-focus has not been adequately improved, select a
slightly more negative trial negative real-number value of []
and perform the chain of calculations again.

8. Applicability to Additional Lens-Based Coherent Radia-
tion Imaging Applications

Attention is now directed towards the applicability of the
previous results to lens-based coherent imaging applications
other than laser or transmission electron—for example those
of microwave masers (including observational imaging of
astronomical masers), coherent x-ray, ion beam “lithogra-
phy,” etc. Lenses or lens-like technologies can be used to
implement coherent imaging. A few examples are briefly
considered.

Accordingly, the aspects of the application can be applied
to used in correcting mis-focus in a stored image produced by
a transmission electron microscope (TEM) as discussed ear-
lier in the context of electron beam imaging [9-10]. Aspects of
the invention provide for applications to images produced by
a traditional TEM as well as other forms of a TEM. Repre-
sentations of both a CTEM and a STEM electron microscope
are shown in FIG. 24, adopted from the book by Buseck,
Cowley, and Eyring High-Resolution Transmission Electron
Microscopy, 1988, Oxford, N.Y., ISBN 0-19504275-1, p. 6
(FIG.1.2).

Similarly aspects of the invention can be applied to used in
correcting mis-focus in a stored image produced by coherent
x-ray imaging, for example as taught in [47].

Similarly aspects of the application can be applied to used
in correcting mis-focus in a stored image produced by holo-
graphic imaging, for example employing holographic lenses
as taught in [48].

9. Incoherent Fractional Fourier Optics

Aspects of the application extend selected or adapted capa-
bilities to incoherent radiation imaging. For example, a num-
ber of roles for the fractional Fourier transform in incoherent
light imaging have been identified [49]. As another example,
some types of holography can be performed with incoherent
light [50], including several types of Fourier imaging and
Fourier spectroscopy. Accordingly, aspects of the application
provides for applications in incoherent light imaging and
incoherent light holography. Further, in an application, the
fractional Fourier mathematical propagation models
employed in the present invention are used to provide a math-
ematical framework for ray tracing geometry in incoherent
light imaging arrangements.
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10. Applications to Lens-Less Diffraction Imaging

Attention is now directed towards the applicability of the
previous results to lens-less diffraction imaging. Diffraction
imaging mathematics models are expressed in terms of the
fractional Fourier transform.

While aspects of the application has been described in
detail with reference to disclosed embodiments, various
modifications within the scope of the invention will be appar-
ent to those of ordinary skill in this technological field. It is to
be appreciated that features described with respect to one
embodiment typically can be applied to other embodiments.

Aspects of the application can be embodied in other spe-
cific forms without departing from the spirit or essential char-
acteristics thereof. The present embodiments are therefore to
be considered in all respects as illustrative and not restrictive,
the scope of the invention being indicated by the appended
claims rather than by the foregoing description, and all
changes which come within the meaning and range of equiva-
lency of the claims are therefore intended to be embraced
therein. Therefore, the invention properly is to be construed
with reference to the claims.
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I claim:

1. A method for numerically generating a centered discrete
fractional Fourier transform matrix on a computer for use in
processing an image, the centered discrete fractional Fourier
transform matrix of size N by N where N is an odd integer, the
method comprising:

numerically calculating the N eigenvectors of an N by N

discrete fractional Fourier transform matrix from a
closed-form mathematical formula, the calculation per-
formed on a computer;
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performing a barrel shift operation on each of the N eigen-

vectors to produce N shifted eigenvectors;
performing a Gram-Schmidt orthogonalization procedure
on the N shifted eigenvectors to produce a first set of
improved-orthogonal shifted eigenvectors, the Gram-
Schmidt orthogonalization procedure;

testing the resulting first set of improved-orthogonal
shifted eigenvectors for mutually orthogonality per-
formed on the computer;
if the first set of improved-orthogonal shifted eigenvectors
does not possess enough mutually orthogonality, apply-
ing another Gram-Schmidt orthogonalization procedure
on the first set of improved-orthogonal shifted eigenvec-
tors to produce a second set of improved-orthogonal
shifted eigenvectors, and
testing the resulting second set of improved-orthogonal
shifted eigenvectors for mutually orthogonality;

wherein if the first set of improved-orthogonal shifted
eigenvectors does not possess enough mutually orthogo-
nality, applying another Gram-Schmidt orthogonaliza-
tion procedure, and testing the resulting improved-or-
thogonal  shifted eigenvectors for mutually
orthogonality, continuing until a resulting set of
improved-orthogonal shifted eigenvectors is sufficiently
orthogonal, and

wherein the resulting set of improved-orthogonal shifted

eigenvectors that is sufficiently orthogonal is used to
create a centered discrete fractional Fourier transform
matrix for use in processing the image.

2. The method of claim 1 wherein the centered discrete
fractional Fourier transform matrix is created from matrix
multiplication of a first matrix comprising of the resulting set
of improved-orthogonal shifted eigenvectors with a second
matrix comprising zeros for off-diagonal elements and frac-
tional powers of eigenvalues in the diagonal elements, the
eigenvalues ordered in the same order that their correspond-
ing eigenvectors are ordered in the first matrix.

3. The method of claim 2 wherein the centered discrete
fractional Fourier transform matrix is created from further
matrix multiplication by a third matrix, the third matrix com-
prising the matrix inverse of the first matrix.

4. The method of claim 1 wherein a measure of orthogo-
nality is used to determine the mutually orthogonality.

5. The method of claim 4 wherein measure of orthogonality
comprises the sum of the pairwise inner products of all pairs
of eigenvectors.

6. The method of claim 5 wherein the value of the measure
of orthogonality is compared to the value of a threshold
number, and a set of improved-orthogonal shifted eigenvec-
tors is classified as sufficiently orthogonal if the value of the
measure of orthogonality is less than the value of the thresh-
old number.

7. The method of claim 1 wherein two such centered dis-
crete fractional Fourier transform matrices are created, the
first associated with the rows of an image array and the second
associated with the columns of the image array, and the two
centered discrete fractional Fourier transform matrices are
combined to create a two-dimensional centered discrete frac-
tional Fourier transform operation.

8. The method of claim 7 wherein two-dimensional cen-
tered discrete fractional Fourier transform operation is orga-
nized as a 4-dimensional tensor.

9. The method of claim 7 wherein the two-dimensional
centered discrete fractional Fourier transform operation is
used to correct misfocus in an image by operating on image
array data, the image array data representing the image com-
prising misfocus.



US 8,712,185 B2

29

10. The method of claim 1 wherein barrel shift operation is
implemented by multiplication of permutation of the N by N
identity matrix.

11. A method for numerically generating a centered dis-
crete fractional Fourier transform matrix on a computer for
use in processing an image, the centered discrete fractional
Fourier transform matrix of size N by N where N is an odd
integer, the method comprising:

numerically calculating the N eigenvectors of an N by N

discrete fractional Fourier transform matrix from a
closed-form mathematical formula, the calculation per-
formed on a computer;

performing a Gram-Schmidt orthogonalization procedure

on the N shifted eigenvectors to produce a first set of
improved-orthogonal shifted eigenvectors, the Gram-
Schmidt orthogonalization procedure performed on the
computer,

testing the resulting first set of improved-orthogonal

shifted eigenvectors for mutually orthogonality;
if the first set of improved-orthogonal shifted eigenvectors
does not possess enough mutually orthogonality, apply-
ing another Gram-Schmidt orthogonalization procedure
on the first set of improved-orthogonal shifted eigenvec-
tors to produce a second set of improved-orthogonal
shifted eigenvectors, and
testing the resulting second set of improved-orthogonal
shifted eigenvectors for mutually orthogonality;

wherein if the first set of improved-orthogonal shifted
eigenvectors does not possess enough mutually orthogo-
nality, applying another Gram-Schmidt orthogonaliza-
tion procedure, and testing the resulting improved-or-
thogonal  shifted eigenvectors for mutually
orthogonality, continuing until a resulting set of
improved-orthogonal shifted eigenvectors is sufficiently
orthogonal;

wherein the resulting set of improved-orthogonal shifted

eigenvectors that is sufficiently orthogonal is subjected
to a barrel shift operation on each of the N eigenvectors,
resulting in N shifted eigenvectors, and

wherein the N shifted eigenvectors are used to create a

centered discrete fractional Fourier transform matrix for
use in processing the image.
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12. The method of claim 11 wherein the centered discrete
fractional Fourier transform matrix is created from matrix
multiplication of a first matrix comprising of the resulting set
of improved-orthogonal shifted eigenvectors with a second
matrix comprising zeros for off-diagonal elements and frac-
tional powers of eigenvalues in the diagonal elements, the
eigenvalues ordered in the same order that their correspond-
ing eigenvectors are ordered in the first matrix.

13. The method of claim 12 wherein the centered discrete
fractional Fourier transform matrix is created from further
matrix multiplication by a third matrix, the third matrix com-
prising the matrix inverse of the first matrix.

14. The method of claim 11 wherein a measure of orthogo-
nality is used to determine the mutually orthogonality.

15. The method of claim 14 wherein measure of orthogo-
nality comprises the sum of the pairwise inner products of all
pairs of eigenvectors.

16. The method of claim 15 wherein the value of the mea-
sure of orthogonality is compared to the value of a threshold
number, and a set of improved-orthogonal shifted eigenvec-
tors is classified as sufficiently orthogonal if the value of the
measure of orthogonality is less than the value of the thresh-
old number.

17. The method of claim 11 wherein two such centered
discrete fractional Fourier transform matrices are created, the
first associated with the rows of an image array and the second
associated with the columns of the image array, and the two
centered discrete fractional Fourier transform matrices are
combined to create a two-dimensional centered discrete frac-
tional Fourier transform operation.

18. The method of claim 17 wherein two-dimensional cen-
tered discrete fractional Fourier transform operation is orga-
nized as a 4-dimensional tensor.

19. The method of claim 17 wherein the two-dimensional
centered discrete fractional Fourier transform operation is
used to correct misfocus in an image by operating on image
array data, the image array data representing the image com-
prising misfocus.

20. The method of claim 1 wherein barrel shift operation is
implemented by multiplication of permutation of the N by N
identity matrix.



