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AUDIO SIGNAL ENCODING AND
DECODING BASED ON HUMAN AUDITORY
PERCEPTION EIGENFUNCTION MODEL IN
HILBERT SPACE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 14/089,605, filed on Nov. 25, 2013, now U.S. Pat. No.
9,613,617 issued on Apr. 4, 2017, which is a continuation of
U.S. application Ser. No. 12/849,013, filed on Aug. 2, 2010,
now U.S. Pat. No. 8,620,643 issued on Dec. 31, 2013, which
claims the benefit of U.S. Provisional Application No.
61/273,182 filed on Jul. 31, 2009, the disclosures of all of
which are incorporated herein in their entireties by refer-
ence.

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to the dynamics of time-limiting
and frequency-limiting properties in the hearing mechanism
auditory perception, and in particular to a Hilbert space
model of at least auditory perception, and further as to
systems and methods of at least signal processing, signal
encoding, user/machine interfaces, data signification, and
human language design.

Background of the Invention

Most of the attempts to explain attributes of auditory
perception are focused on the perception of steady-state
phenomenon. These tend to separate affairs in time and
frequency domains and ignore their interrelationships. A
function cannot be both time and frequency-limited, and
there are trade-offs between these limitations.

The temporal and pitch perception aspects of human
hearing comprise a frequency-limiting property or behavior
in the frequency range between approximately 20 Hz and 20
KHz. The range slightly varies for each individual’s bio-
logical and environmental factors, but human ears are not
able to detect vibrations or sound with lesser or greater
frequency than in roughly this range. The temporal and pitch
perception aspects of human hearing also comprise a time-
limited property or behavior in that human hearing perceives
and analyzes stimuli within a time correlation window of 50
msec (sometimes called the “time constant” of human
hearing). A periodic audio stimulus with period of vibration
faster than 50 msec is perceived in hearing as a tone or pitch,
while a periodic audio stimulus with period of vibration
slower than 50 msec will either not be perceived in hearing
or will be perceived in hearing as a periodic sequence of
separate discrete events. The ~50 msec time correlation
window and the ~20 Hz lower frequency limit suggest a
close interrelationship in that the period of a 20 Hz periodic
waveform is in fact 50 msec.

As will be shown, these can be combined to create a
previously unknown Hilbert-space of eigenfunction model-
ing auditory perception. This new Hilbert-space model can
be used to study aspects of the signal processing structure of
human hearing. Further, the resulting eigenfunction them-
selves may be used to create a wide range of novel systems
and methods signal processing, signal encoding, user/ma-
chine interfaces, data signification, and human language
design.

Additionally, the ~50 msec time correlation window and
the ~20 Hz lower frequency limit appear to be a property of
the human brain and nervous system that may be shared with
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other senses. As will a result, the Hilbert-space of eigen-
function may be useful in modeling aspects of other senses,
for example, visual perception of image sequences and
motion in visual image scenes.

For example, there is a similar ~50 msec time correlation
window and the ~20 Hz lower frequency limit property in
the visual system. Sequences of images, as in a flipbook,
cinema, or video, start blending into perceived continuous
image or motion as the frame rate of images passes a
threshold rate of about 20 frames per second. At 20 frames
per second, each image is displayed for 50 msec. At a slower
rate, the individual images are seen separately in a sequence
while at a faster rate the perception of continuous motion
improves and quickly stabilizes. Similarly, objects in a
visual scene visually oscillating in some attribute (location,
color, texture, etc.) at rates somewhat less than ~20 Hz can
be followed by human vision, but at oscillation rates
approaching ~20 Hz and above human vision perceives
these as a blur.

SUMMARY OF THE INVENTION

The invention comprises a computer numerical process-
ing method for representing audio information for use in
conjunction with human hearing. The method includes the
steps of approximating an eigenfunction equation represent-
ing a model of human hearing, calculating the approxima-
tion to each of a plurality of eigenfunction from at least one
aspect of the eigenfunction equation, and storing the
approximation to each of a plurality of eigenfunction for use
at a later time. The approximation to each of a plurality of
eigenfunction represents audio information.

The model of human hearing includes a band pass opera-
tion with a bandwidth having the frequency range of human
hearing and a time-limiting operation approximating the
time duration correlation window of human hearing.

In another aspect of the invention, a method for repre-
senting audio information for use in conjunction with human
hearing includes retrieving a plurality of approximations,
each approximation corresponding with one of a plurality of
eigenfunction previously calculated, receiving incoming
audio information, and using the approximation to each of a
plurality of eigenfunction to represent the incoming audio
information by mathematically processing the incoming
audio information together with each of the retrieved
approximations to compute a coeflicient associated with the
corresponding eigenfunction and associated the time of
calculation, the result comprising a plurality of coefficients
values associated with the time of calculation.

Each approximation results from approximating an eigen-
function equation representing a model of human hearing,
wherein the model comprises a band pass operation with a
bandwidth including the frequency range of human hearing
and a time-limiting operation approximating the time dura-
tion correlation window of human hearing.

The plurality of coefficient values is used to represent at
least a portion of the incoming audio information for an
interval of time associated with the time of calculation.

In yet another aspect of the invention, the method for
representing audio information for use in conjunction with
human hearing includes retrieving a plurality of approxima-
tions, receiving incoming coefficient information, and using
the approximation to each of a plurality of eigenfunction to
produce outgoing audio information by mathematically pro-
cessing the incoming coeflicient information together with
each of the retrieved approximations to compute the value of
an additive component to an outgoing audio information
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associated an interval of time, the result comprising a
plurality of coefficient values associated with the calculation
time.

Each approximation corresponds with one of a plurality of
previously calculated eigenfunction, and results from
approximating an eigenfunction equation representing a
model of human hearing. The model of human hearing
includes a band pass operation with a bandwidth having the
frequency range of human hearing and a time-limiting
operation approximating the time duration correlation win-
dow of human hearing.

The plurality of coefficient values is used to produce at
least a portion of the outgoing audio information for an
interval of time.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of
the present invention will become more apparent upon
consideration of the following description of preferred
embodiments, taken in conjunction with the accompanying
drawing figures.

FIG. 1a depicts a simplified model of the temporal and
pitch perception aspects of the human hearing process.

FIG. 15 shows a slightly modified version of the simpli-
fied model of FIG. 1a comprising smoother transitions at
time-limiting and frequency-limiting boundaries.

FIG. 2 depicts a partition of joint time-frequency space
into an array of regional localizations in both time and
frequency (often referred to in wavelet theory as a “frame”).

FIG. 3a figuratively illustrates the mathematical operator
equation whose eigenfunction are the Prelate Spheroidal
Wave Functions (PSWFs).

FIG. 3b shows the low-pass Frequency—Limiting opera-
tion and its Fourier transform and inverse Fourier transform
(omitting scaling and argument sign details), the “sinc”
function, which correspondingly exists in the Time domain.

FIG. 3¢ shows the low-pass Time-Limiting operation and
its Fourier transform and inverse Fourier transform (omit-
ting scaling and argument sign details), the “sinc” function,
which correspondingly exists in the Frequency domain.

FIG. 4 summarizes the above construction of the low-pass
kernel version of the operator equation BD[y,](0)=Ap;,
resulting in solutions 1, that are the Prelate Spheroidal Wave
Functions (“PSWF”).

FIG. 5a shows a representation of the low-pass kernel
case in a manner similar to that of FIGS. 14 and 15.

FIG. 5b shows a corresponding representation of the
band-pass kernel case in a manner similar to that of FIG. 5a.

FIG. 6a shows a corresponding representation of the
band-pass kernel case in a first (non causal) manner relating
to the concept of a Hilbert space model of auditory eigen-
function.

FIG. 6b shows a causal variation of FIG. 6a wherein the
time-limiting operation has been shifted so as to depend only
on events in past time up to the present (time 0).

FIG. 7a shows a resulting view bridging the empirical
model represented in FIG. 1a with a causal modification of
the band-pass variant of the Slepian PSWF mathematics
represented in FIG. 6b.

FIG. 7b develops the model of FIG. 7a further by incor-
porating the smoothed transition regions represented in FI1G.
1b.

FIG. 8a depicts a unit step function.

FIGS. 85 and 8¢ depict shifted unit step functions.

FIG. 8d depicts a unit gate function as constructed from
a linear combination of two unit step functions.
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FIG. 9a depicts a sign function.

FIGS. 956 and 9¢ depict shifted sign functions.

FIG. 9d depicts a unit gate function as constructed from
a linear combination of two sign functions.

FIG. 10a depicts an informal view of a unit gate function
wherein details of discontinuities are figuratively general-
ized by the depicted vertical lines.

FIG. 105 depicts a subtractive representation of a unit
‘band pass gate function.’

FIG. 10c depicts an additive representation of a unit ‘band
pass gate function.’

FIG. 11a depicts a cosine modulation operation on the
lowpass kernel to transform it into a band pass kernel.

FIG. 115 graphically depicts operations on the lowpass
kernel to transform it into a frequency-scaled band pass
kernel.

FIG. 12a depicts a table comparing basis function
arrangements associated with Fourier Series, Hermite func-
tion series, Prelate Spheroidal Wave Function series, and the
invention’s auditory eigenfunction series.

FIG. 124 depicts the steps of numerically approximating,
on a computer or mathematical processing device, an eigen-
function equation representing a model of human hearing,
the model comprising a band pass operation with a band-
width comprised by the frequency range of human hearing
and a time-limiting operation approximating the duration of
the time correlation window of human hearing.

FIG. 13 depicts a flow chart for an adapted version of the
numerical algorithm proposed by Morrison [12].

FIG. 14 provides a representation of macroscopically
imposed models (such as frequency domain), fitted isolated
models (such as critical band and loudness/pitch interdepen-
dence), and bottom-up biomechanical dynamics models.

FIG. 15 shows how the Hilbert space model may be able
to predict aspects of the models of FIG. 14.

FIG. 16 depicts (column-wise) classifications among the
classical auditory perception models of FIG. 14.

FIG. 17 shows an extended formulation the Hilbert space
model to other aspects of hearing, such as logarithmic senses
of amplitude and pitch, and its role in representing obser-
vational, neurological process, and portions of auditory
experience domains.

FIG. 18 depicts an aggregated multiple parallel narrow-
band channel model comprising multiple instances of the
Hilbert space, each corresponding to an effectively associ-
ated ‘critical band.’

FIG. 19 depicts an auditory perception model somewhat
adapted from the model of FIG. 17 wherein incoming
acoustic audio is provided to a human hearing audio trans-
duction and hearing perception operations whose outcomes
and internal signal representations are modeled with an
auditory eigenfunction Hilbert space model framework.

FIG. 20 depicts an exemplary arrangement of that can be
used as a step or component within an application or human
testing facility.

FIG. 21 depicts an exemplary human testing facility
capable of supporting one or more types of study and
application development activities, such as hearing, sound
perception, language, subjective properties of auditory
eigenfunction, applications of auditory eigenfunction, etc.

FIG. 224 depicts a speech production model for non-tonal
spoken languages.

FIG. 224 depicts a speech production model for tonal
spoken languages.

FIG. 23 depicts a bird call and/or bird song vocal pro-
duction model.
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FIG. 24 depicts a general speech and vocalization pro-
duction model that emphasizes generalized vowel and
vowel-like-tone production that can be applied to the study
human and animal vocal communications as well as other
applications.

FIG. 25 depicts an exemplary arrangement for the study
and modeling of various aspects of speech, animal vocal-
ization, and other applications combining the general audi-
tory eigenfunction hearing representation model of FIG. 19
and the general speech and vocalization production model of
FIG. 24.

FIG. 26a depicts an exemplary analysis arrangement that
can be used as a component in the arrangement of FIG. 25
wherein incoming audio information (such as an audio
signal, audio stream, audio file, etc.) is provided in digital
form S(n) to a filter analysis bank comprising filters, each
filter comprising filter coefficients that are selectively tuned
to a finite collection of separate distinct auditory eigenfunc-
tion.

FIG. 265 depicts an exemplary synthesis arrangement,
akin to that of FIG. 20, and that can be used as a component
in the arrangement of FIG. 25, by which a stream of
time-varying coeflicients are presented to a synthesis basis
function signal bank enabled to render auditory eigenfunc-
tion basis functions by at least time-varying amplitude
control.

FIG. 27 shows a data signification embodiment wherein a
native data set is presented to normalization, shifting, (non-
linear) warping, and/or other functions, index functions, and
sorting functions

FIG. 28 shows a data signification embodiment wherein
interactive user controls and/or other parameters are used to
assign an index to a data set.

FIG. 29 shows a “multichannel signification” employing
data-modulated sound timbre classes set in a spatial meta-
phor stereo sound field.

FIG. 30 shows a signification rendering embodiment
wherein a dataset is provided to exemplary signification
mappings controlled by interactive user interface.

FIG. 31 shows an embodiment of a three-dimensional
partitioned timbre space.

FIG. 32 depicts a trajectory of time-modulated timbral
attributes within a partition of a timbre space.

FIG. 33 depicts the partitioned coordinate system of a
timbre space wherein each timbre space coordinate supports
a plurality of partition boundaries.

FIG. 34 depicts a data visualization rendering provided by
a user interface of a GIS system depicting an aerial or
satellite map image for a studying surface water flow path
through a complex mixed-use area comprising overlay
graphics such as a fixed or animated flow arrow.

FIG. 35a depicts a filter-bank encoder employing
orthogonal basis functions.

FIG. 35b depicts a signal-bank decoder employing
orthogonal basis functions.

FIG. 36a depicts a data compression signal flow wherein
an incoming source data stream is presented to compression
operations to produce an outgoing compressed data stream.

FIG. 365 depicts a decompression signal flow wherein an
incoming compressed data stream is presented to decom-
press operations to produce an outgoing reconstructed data
stream.

FIG. 37a depicts an exemplary encoder method for rep-
resenting audio information with auditory eigenfunction for
use in conjunction with human hearing.
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FIG. 37b depicts an exemplary decoder method for rep-
resenting audio information with auditory eigenfunction for
use in conjunction with human hearing.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawing figures which form a part hereof,
and which show by way of illustration specific embodiments
of the invention. It is to be understood by those of ordinary
skill in this technological field that other embodiments can
be utilized, and structural, electrical, as well as procedural
changes can be made without departing from the scope of
the present invention. Wherever possible, the same element
reference numbers will be used throughout the drawings to
refer to the same or similar parts.

1. A Primitive Empirical Model of Human Hearing

A simplified model of the temporal and pitch perception
aspects of the human hearing process useful for the initial
purposes of the invention is shown in FIG. 1la. In this
simplified model, external audio stimulus is projected into a
“domain of auditory perception” by a confluence of opera-
tions that empirically exhibit a 50 msec time-limiting “gat-
ing” behavior and 20 Hz-20 kHz “band-pass” frequency-
limiting behavior. The time-limiting gating operation and
frequency-limiting band-pass operations are depicted here
as simple on/off conditions—phenomenon outside the time
gate interval are not perceived in the temporal and pitch
perception aspects of the human hearing process, and phe-
nomenon outside the band-pass frequency interval are not
perceived in the temporal and pitch perception aspects of the
human hearing process.

FIG. 15 shows a slightly modified (and in a sense more
“refined”) version of the simplified model of FIG. 1a. Here
the time-limiting gating operation and frequency-limiting
band-pass operations are depicted with smoother transitions
at their boundaries.

2. Towards an Associated Hilbert Space Auditory Eigen-
function Model of Human Hearing

As will be shown, these simple properties, together with
an assumption regarding aspects of linearity can be com-
bined to create a Hilbert-space of eigenfunction modeling
auditory perception.

The Hilbert space model is built on three of the most
fundamental empirical attributes of human hearing:

a. the aforementioned approximate 20 Hz-20 KHz fre-
quency range of auditory perception [1] (and its associated
‘band pass’ frequency limiting operation);

b. the aforementioned approximate 50 msec time-corre-
lation window of auditory perception [2]; and

c. the approximate wide-range linearity (modulo post-

summing logarithmic amplitude perception) when several
signals are superimposed [1-2].
These alone can be naturally combined to create a Hilbert-
space of eigenfunction modeling auditory perception. Addi-
tionally, there are at least two ways such a model can be
applied to hearing:

a wideband version wherein the model encompasses the

entire audio range; and

an aggregated multiple parallel narrow-band channel ver-

sion wherein the model encompasses multiple
instances of the Hilbert space, each corresponding to an
effectively associated ‘critical band’ [2].
As is clear to one familiar with eigensystems, the collection
of eigenfunction is the natural coordinate system within the
space of all functions (here, signals) permitted to exist
within the conditions defining the eigensystem. Addition-
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ally, to the extent the eigensystem imposes certain attributes
on the resulting Hilbert space, the eigensystem effectively
defines the aforementioned “rose colored glasses™ through
which the human experience of hearing is observed.

3. Auditory Eigenfunction Model of Human Hearing Versus
“Auditory Wavelets”

The popularity of time-frequency analysis [41-42], wave-
let analysis, and filter banks has led to a remotely similar
type of idea for a mathematical analysis framework that has
some sort of indigenous relation to human hearing [46].
Early attempts were made to implement an electronic
cochlea [42-45] using these and related frameworks. This
segued into the notion of ‘Auditory Wavelets’ which has
seen some level of treatment [47-49]. Efforts have been
made to construct ‘Auditory Wavelets’ in such a fashion as
to closely match various measured empirical attributes of the
cochlea, and further to even apply these to applications of
perceived speech quality [50] and more general audio qual-
ity [51].

The basic notion of wavelet and time frequency analysis
involves localizations in both time and frequency domains
[40-41]. Although there are many technicalities and exten-
sive variations (notably the notion of oversampling), such
localizations in both time and frequency domains create the
notion of a partition of joint time-frequency space, usually
rectangular grid or lattice (referred to as a “frame™) as
suggested by FIG. 2. If complete in the associated Hilbert
space, wavelet systems are constructed from the bottom-up
from a catalog of candidate time-frequency-localized scal-
able basis functions, typically starting with multi-resolution
attributes, and are often over-specified (i.e., redundant) in
their span of the associated Hilbert space.

In contrast, the present invention employs a completely
different approach and associated outcome, namely deter-
mining the ‘natural modes’ (eigenfunction) of the operations
discussed above in sections 1 and 2. Because of the non-
symmetry between the (‘band pass’) Frequency-Limiting
operation (comprising a ‘gap’ that excludes frequency val-
ues near and including zero frequency) and the Time-
Limiting operation (comprising no such ‘gap’), one would
not expect a joint time-frequency space partition like that
suggested by FIG. 2 for the collection of Auditory eigen-
function.

4. Similarities to the (“Low Pass”) Prelate Spheroidal Wave-
function Models of Slepian et al.

The aforementioned attributes of hearing {“a”, “b”, “c”}
are not unlike those of the mathematical operator equation
that gives rise to the Prelate Spheroidal Wave Functions
(PSWFs):

1. Frequency Band Limiting from 0 to a finite angular
frequency maximum value Q mathematically, within “com-
plex-exponential” and Fourier transform frequency range
[-Q. Q)

2. Time Duration Limiting from -1/2 to +T/2 (mathemati-
cally, within time interval [-T/2, T/2]—the centering of the
time interval around zero used to simplify calculations and
to invoke many other useful symmetries);

3. Linearity, bounded energy (i.e., bounded L* norm).
This arrangement is figuratively illustrated in FIG. 3a.

In a series of celebrated papers beginning in 1961 ([1-3]
among others), Slepian and colleagues at Bell Telephone
Laboratories developed a theory of wide impact relating
time-limited signals, band limited signals, the uncertainty
principle, sampling theory, Sturm-Liouville differential
equations, Hilbert space, non-degenerate eigensystems, etc.,
with what were at the time an obscure set of orthogonal
polynomials (from the field of mathematical physics) known
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as Prelate Spheroidal Wave Functions. These functions and
the mathematical framework that was subsequently devel-
oped around them have found widespread application and
brim with a rich mix of exotic properties. The PSWF have
since come to be widely recognized and have found a broad
range of applications (for example [9,10] among many
others).

The Frequency Band Limiting operation in the Slepian
mathematics [3-5] is known from signal theory as an ideal
Low-Pass filter (passing low frequencies and blocking
higher frequencies, making a step on/off transition between
frequencies passed and frequencies blocked). Slepian’s
PSWF mathematics combined the (low-pass) Frequency
Band Limiting (denote that as 8) and the Time Duration
Limiting operation (denote that as D) to form an operator
equation eigensystem problem:

BD[,]()=hap; (6]

to which the solutions 1, are scalar multiples of the PSWFs.
Here the A, are the eigenvalues, the 1, are the eigenfunction,
and the combination of these is the eigensystem.

Following Slepian’s original notation system, the Fre-
quency Band Limiting operation B can be mathematically
realized as

Bf () L f QF( Ve d @
= w)e w
V2r J-a

where F is the Fourier transform of the function f, here
normalized as

Fw)y=f_,~f(t)e ™" dr. 3)

As an aside, the Fourier transform

Fw)y=f_,~f(t)e ™" dr. 4

maps a function in the Time domain into another function in
the Frequency domain. The inverse Fourier transform

= L T rmetna &)
fo= f: (we™dw,

maps a function in the Frequency domain into another
function in the Time domain. These roles may be reversed,
and the Fourier transform can accordingly be viewed as
mapping a function in the Frequency domain into another
function in the Time domain. In overview of all this, often
the Fourier transform and its inverse are normalized so as to
look more similar

P f‘”F( " )
= — w)e W
Var Jw

Fon = — f Fe @
W)= —— Iz .
Vom J-oo

(and more importantly to maintain the value of the L? norm
under transformation between Time and Frequency
domains), although Slepian did not use this symmetric
normalization convention.

Returning to the operator equation

BD[, )=~ ®
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the Time Duration Limiting operation D can be mathemati-
cally realized as

fe) |t =72
Df(n) =
0, |z] > 72

and some simple calculus combined with an interchange of
integration order (justified by the bounded L* norm) and
managing the integration variables among the integrals
accurately yields the integral equation

)

10

7%sinﬂ([—s) .
A (0 :f ——i(s)ds, i=0,1,2, ---.

,% n(t—s)

as a representation of the operator equation

BD[,)(O=hap;. (11

The ratio expression within the integral sign is the “sinc”
function and in the language of integral equations its role is
called the kernel. Since this “sinc” function captures the
low-pass Frequency Band Limiting operation, it has become
known as the “low-pass kernel.”

FIG. 34 depicts an illustration the low-pass Frequency
Band Limiting operation (henceforth “Frequency-Limiting”
operation). In the frequency domain, this operation is known
as a “gate function” and its Fourier transform and inverse
Fourier transform (omitting scaling and argument sign
details) is the “sinc” function in the Time domain. More
detail will be provided to this in Section 8.

A similar “gate function” structure also exists for the Time
Duration Limiting operation (henceforth “Time-Limiting
operation”). Its Fourier transform is (omitting scaling and
argument sign details) the “sinc” function in the Frequency
domain. FIG. 3¢ depicts an illustration of the low-pass
Time-Limiting operation and its Fourier transform and
inverse Fourier transform (omitting scaling and argument
sign details), the “sinc” function, which correspondingly
exists in the Frequency domain.

FIG. 4 summarizes the above construction of the low-pass
kernel version of the operator equation

[w1@=hap;, (11

(i.e., where B comprises the low-pass kernel) which may be
represented by the equivalent integral equation

Aipi(n) = f% sine - ) 4

i(s)ds, i=0,1,2, -
iy VO i=0 L2

Here the Time-Limiting operation T is manifest as the limits
of integration and the Band-Limiting operation B is manifest
as a convolution with the Fourier transform of the gate
function associated with B.

The integral equation of Eq. 12 has solutions 1, in the
form of eigenfunction with associated eigenvalues. As will
be described shortly, these eigenfunction are scalar multiples
of the PSWFs.
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Classically [3], the PSWFs arise from the differential
equation

d*u du > (13)
(1 —r2)F —ZIE Fx—FPu=0

When c¢ is real, the differential equation has continuous
solutions for the variable t over the interval [-1, 1] only for
certain discrete real positive values of the parameter x (i.e.,
the eigenvalues of the differential equation). Uniquely asso-
ciated with each eigenvalue is a unique eigenfunction that
can be expressed in terms of the angular prolate spheroidal
functions S, (c,t). Among the vast number of interesting and
useful properties of these functions are.
The S,,(c.t) are real for real t;
The S,,,(c,t) are continuous functions of ¢ for ¢>0;
The S,,,(c,t) can be extended to be entire functions of the
complex variable t;
The SOn(c t) are orthogonal in (-1, 1) and are complete in
L%
So.(cst) have exactly n zeros in (-1, 1);
Sg,(c.t) reduce to P, (t) uniformly in [-1, 1] as c—0;
The S,,,(c,t) are is even or odd according to whether n is
even or odd.
(As an aside, S,,(c,0)=P, (0) where P,(t) is the nth Legendre
polynomial).
Slepian shows the correspondence between S,,(c,t) and
(1) using the radial prolate spheroidal functions which are
proportional (for each n) to the angular prolate spheroidal
functions according to:

Ro, ey, (c)Son(c,1) (14)

which are then found to determine the Time-Limiting/Band-
Limiting eigenvalues

1s)

Aule) = [Rg,;(c 1)] n=0,1,2, -

The correspondence between S,,,(c,t) and , (1) is given by:

VE@ 1o

L Sonle, 0PPett

Ynle, 1) = Son(c, 21/7T),

the above formula obtained combining two of Slepian’s
formulas together, and providing further calculation:

[2
R =
Fie

L Bonte, DPar

(18)

Wnlc, 1) = Sonlc, 2t/ T) or

a9
kn(€)Son(c, 1)

= 5

Yale, 1) = Sonle, 20/ T).

L Bonte. DPet

Additionally, orthogonally was shown [3] to be true over
two intervals in the time-domain:
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7 0, i#j\. .
flﬂ;(l)lﬂ;(l)dl= =012,
7% A, =

o 0, i%j
fw;mwi(z)dz:{ . .}i,jzo,l,z,---.
—co 1 t=7

Orthogonality over two intervals, sometimes called “double
orthogonality” or “dual orthogonality,” is a very special
property [29-31] of an eigensystem; such eigenfunction and
the eigensystem itself are said to be “doubly orthogonal.”

Of importance to the intended applications for the low-
pass kernel formulation of the Slepian mathematics [3-5]
was that the eigenvalues were real and were not shared by
more than one eigenfunction (i.e., the eigenvalues are not
repeated, a condition also called “non-degenerate” accord-
ingly a “degenerate” eigensystem has “repeated eigenval-
ues.”

Most of the properties of 1,,(c,t) and S, (c,t) will be of
considerable value to the development to follow.

5. The Bandpass Variant and its Relation to Auditory Eigen-
function Hilbert Space Model

A variant of Slepian’s PSWF mathematics (which in fact
Slepian and Pollak comment on at the end of the initial 1961
paper [3]) replaces the low-pass kernel with a band-pass
kernel. The band-pass kernel leaves out low frequencies,
passing only frequencies of a particular contiguous range.
FIG. 5a shows a representation of the low-pass kernel case
in a manner similar to that of FIGS. 1a and 15. FIG. 5b
shows a corresponding representation of the band-pass ker-
nel case in a manner similar to that of FIG. 5a.

Referring to the {“a”, “b”, “c”} empirical attributes of
human hearing and the {“1”, “2”, “3”} Slepian PSWF
mathematics, replacing the low-pass kernel with a band-pass
kernel amounts to replacing condition “1” in Slepian’s
PSWF mathematics with empirical hearing attribute “a.” For
the purposes of initially formulating the Hilbert space
model, conditions “2” and “3” in Slepian’s PSWF math-
ematics may be treated as effectively equivalent to empirical
hearing attributes “b” and “c.” Thus formulating a band-pass
kernel variant of Slepian’s PSWF mathematics suggests the
possibility of creating and exploring a Hilbert-space of
eigenfunction modeling auditory perception. This is shown
in FIG. 6a, which may be compared to FIG. 1a.

It is noted that the Time-Limiting operation in the
arrangement of FIG. 6a is non-causal, i.e., it depends on the
past (negative time), present (time 0), and future (positive
time). FIG. 6b shows a causal variation of FIG. 6a wherein
the Time-Limiting operation has been shifted so as to
depend only on events in past time up to the present (time
0). FIG. 7a shows a resulting view bridging the empirical
model represented in FIG. 1a with a causal modification of
the band-pass variant of the Slepian PSWF mathematics
represented in FIG. 6b. FIG. 76 develops this further by
incorporating the smoothed transition regions represented in
FIG. 15.

Attention is now directed to mathematical representations
of unit gate functions as used in the Band-Limiting operation
(and relevant to the Time-Limiting operation). A unit gate
function (taking on the values of 1 on an interval and O
outside the interval) can be composed from generalized
functions in various ways, for example various linear com-
binations or products of generalized functions, including
those involving a negative dependent variable. Here repre-
sentations as the difference between two “unit step func-
tions” and as the difference between two “sign functions”
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(both with positive unscaled dependent variable) are pro-
vided for illustration and associated calculations.

FIG. 8a illustrates a unit step function, notated as Unit-
Step[x] and traditionally defined as a function taking on the
value of 0 when x is negative and 1 when X is non-negative
If the dependent variable x is offset by a value ¢>0 to x—q
or X+q, the unit step function UnitStep[x] is, respectively,
shifted to the right (as shown in FIG. 85) or left (as shown
in FIG. 8¢). When a unit function shifted to the right (notated
UnitStep[x—a]) is subtracted from a unit function shifted to
the left (notated UnitStep[x+a]), the resulting function is
equivalent to a gate function, as illustrated in FIG. 84.

As mentioned earlier, a gate function can also be repre-
sented by a linear combination of “sign” functions. FIG. 9a
illustrates a sign function, notated Sign[x], traditionally
defined as a function taking on the value of —1 when x is
negative, zero when x=0, and +1 when x is positive. If the
dependent variable x is offset by a value q>0 to x-a or x+a,
the sign function Sign[x] is, respectively, shifted to the right
(as shown in FIG. 95) or left (as shown in FIG. 9¢). When
a sign function shifted to the right (notated Sign[x-a]) is
subtracted from a sign function shifted to the left (notated
Sign[x+a]), the resulting function is similar to a gate func-
tion as illustrated in FIG. 9d4. However, unlike the case of
gate function composed of two unit step functions, the
resulting function has to be normalized by 4 in order to
obtain a representation for the unit gate function.

These two representations for the gate function differ
slightly in the handling of discontinuities and invoke some
issues with symbolic expression handling in computer appli-
cations such as Mathematica™, MatLAB™, etc. For the
analytical calculations here, the discontinuities are a set with
zero measure and are thus of no consequence. Henceforth
the unit gate function will be depicted as in FIG. 10a and
details of discontinuities will be figuratively generalized
(and mathematically obfuscated) by the depicted vertical
lines. Attention is now directed to constructions of band pass
kernel from a linear combination of two gate functions.

Subtractive Unshifted Representation: By subtracting a

narrower unshifted unit gate function from a wider
unshifted unit gate function, a unit ‘band pass gate
function’ is obtained. For example, when representing
each unit gate function by the difference of two sign
functions (as described above), the unit ‘band pass gate
function’ can be represented as:

Vo[ (Sign[x+p]-Sign[x-p])-(Sign[x+a]-Sign[x-a])]

This subtractive unshifted representation of unit ‘band pass
gate function’ is depicted in FIG. 104.
Additive Shifted Representation: By adding a left-shifted
unit gate function to a right-shifted unit gate function,
a unit ‘band pass gate function’ is obtained. For
example, when representing each unit gate function by
the difference of two sign functions (as described
above), the unit ‘band pass gate function’ can be
represented as:

Ya[Sign[w+(x+d)]+Sign[w-(x—d)]+Y2[Sign[w+(x-d)]+
Sign[w-(x-d)]
This additive shifted representation of unit ‘band pass gate
function’ is depicted in FIG. 10c.

By organized equating of variables these can be shown to
be equivalent with certain natural relations among a, 3, W,
and d. Further, it can be shown that the additive shifted
representation leads to the cosine modulation form described
in conjunction with FIGS. 11a and 115 (described below) as
used by Slepian and Pollack [3] as well as Morrison [12]
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while the subtractive unshifted version leads to unshifted
since functions which can be related to the cosine modulated
sinc function through use of the trigonometric identity:

sin a cos P=Y2 sin(0+P)+%2 sin(o—p)

6. Early Analysis of the Bandpass Variant—Work of Slepian,
Pollak and Morrison

The lowpass kernel can be transformed into a band pass
kernel by cosine modulation

o 4 o0
cos =

as shown in FIG. 11a. FIG. 115 graphically depicts opera-
tions on the lowpass kernel to transform it into a frequency-
scaled band pass kernel—each complex exponential invokes
a shift operation on the gate function:

15e7 shifts the function to the right in direction by 6

units

e~ shifts the function to the left in direction by 6 units
This corresponds to the additive shifted representation of the
unit gate function described above. The resulting kernel,
using the notation of Morrison [12], is:

sin[br]
br

coslar]

and the corresponding convolutional integral equation (in a
form anticipating eigensystem solutions) is

cosla(r—s)u;(s)ds, i=0,1,2, ---.

T
2 sin[b(r — 5)]
A (1) = fg s

Slepian and Pollak’s sparse passing remarks pertaining to
the band-pass variant, however, had to do with the existence
of certain types of differential equations that would be
related and with the fact that the eigensystem would have
repeated eigenvalues (degenerate). Morrison shortly there-
after developed this direction further in a short series of
subsequent papers [11-14; also see 15]. The band pass
variant has effectively not been studied since, and the work
that has been done on it is not of the type that can be used
directly for creating and exploring a Hilbert-space of eigen-
function modeling auditory perception.

The little work available on the band pass variant [3,11-
14; also 15] is largely concerned about degeneracy of the
eigensystem in interplay with fourth order differential opera-
tors.

Under the assumptions in some of this work (for example,
as in [3,12]] degeneracy implies one eigenfunction can be
the derivative of another eigenfunction, both sharing the
same eigenvalue. The few results that are available for the
(step-boundary transition) band pass kernel case describe
([3] page 43, last three sentences, [12] page 13 last para-
graph though paragraph completion atop page 14):

The existence of band pass variant eigensystems with
repeated eigenvalues [12,14] wherein time-derivatives
of a given eigenfunction are also seen to be an eigen-
function sharing the same eigenvalue with the given
eigenfunction. (In analogies with sines and cosines,
may give rise to quadrature structures (as for PSWF-
type mathematics) [20] and/or Jordan chains [40]);
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Although the 2"“-order linear differential operator of the
classical PSWF differential equation commutes with
the lowpass kernel integral operator, there is in the
general case no 2"%order or 4”-order self-adjoint linear
differential operator with polynomial coefficients (i.e.,
a comparable 2*“order or 4”-order linear differential
operator) that commutes with the band pass kernel
integral operator;

However, a 4”-order self-adjoint linear differential opera-
tor does exist under these conditions ([12] page 13 last
paragraph though paragraph completion atop page 14):

i. The eigenfunction are either even or odd functions;

ii. The eigenfunction vanish outside the Time-Limiting
interval (for example, outside the interval {-T/2, +T/2} in
the Slepian/Pollack PSFW formulation [3] or outside the
interval {-1, +1} in the Morrison formulation [12]; this
imposes the degeneracy condition.

Morrison provides further work, including a proposed
numerical construction, but then in this [12] and other
papers (such as [14]) turns attention to the limiting case
where the scale term “b” of the sinc function in his Eq.
(1.5). approaches zero (which effectively replaces the
“sinc” function kernel with a cosine function kernel).

The band pass variant eigenfunction inherit the double
orthogonality property ([3], page 63, third-to-last sen-
tence].

7. Relating Early Bandpass Kernel Results to Hilbert Space
Auditory Eigenfunction Model

As far as creating a Hilbert-space of eigenfunction mod-
eling auditory perception, one would be concerned with the
eigensystem of the underlying integral equation (actually, in
particular, a convolution equation) and not have concern
regarding any differential equations that could be demon-
strated to share them. Setting aside any differential equation
identification concern, it is not clear that degeneracy is
always required and that degeneracy would always involve
eigenfunction such that one is the derivative of another.
However, even if either or both of these were indeed
required, this might be fine. After all, the solutions to a
second-order linear oscillator differential equation (or inte-
gral equation equivalent) involve sines and cosines; these
would be able to share the same eigenvalue and in fact sine
and cosine are (with a multiplicative constant) derivatives of
one another, and sines and cosines have their role in hearing
models. Although one would not expect the Hilbert-space of
eigenfunction modeling auditory perception to comprise
simple sines and cosines, such requirements (should they
emerge) are not discomforting.

FIG. 12a depicts a table comparing basis function
arrangements associated with Fourier Series, Hermite func-
tion series, Prelate Spheroidal Wave Function series, and the
invention’s auditory eigenfunction series.

The Fourier series basis functions have many appealing
attributes which have led to the wide applicability of
Fourier analysis, Fourier series, Fourier transforms, and
Laplace transforms in electronics, audio, mechanical
engineering, and broad ranges of engineering and sci-
ence. This includes the fact that the basis functions
(either as complex exponentials or as trigonometric
functions) are the natural oscillatory modes of linear
differential equations and linear electronic circuits
(which obey linear differential equations). These basis
functions also provide a natural framework for fre-
quency-dependent audio operations and properties such
as tone controls, equalization, frequency responses,
room resonances, etc.
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The Hermite Function basis functions are more obscure
but have important properties relating them to the Fourier
transform [34] stemming from the fact that they are eigen-
function of the (infinite) continuous Fourier transform
operator. The Hermite Function basis functions were also
used to define the fractional Fourier transform by Naimas
[51] and later but independently by the inventor to identify
the role of the fractional Fourier transform in geometric
optics of lenses [52] approximately five years before this
optics role was independently discovered by others ([53],
page 386); the fractional Fourier transform is of note as it
relates to joint time-frequency spaces and analysis, the
Wigner distribution [53], and, as shown by the inventor in
other work, incorporates the Bargmann transform of coher-
ent states (also important in joint time-frequency analysis
[41]) as a special case via a change of variables. (The
Hermite functions of course also play an important inde-
pendent role as basis functions in quantum theory due to
their eigenfunction roles with respect to the Schrddinger
equation, harmonic oscillator, Hermite semigroup, etc.)

The PSWF basis functions are historically even more

obscure but have gained considerable attention as a
result of the work of Slepian, Pollack, and Landau
[3-5], many of their important properties stemming
from the fact that they are eigenfunction of the finite
continuous Fourier transform operator [3]. (The PSWF
historically also play an important independent role as
basis functions in electrodynamics and mechanics due
to their eigenfunction roles with respect to the classical
prolate spheriodial differential equation).
The auditory eigenfunction basis functions of the present
invention are thought to be an even more recent develop-
ment. Among their advocated attributes are that they are the
eigenfunction of the “auditory perception” operation and as
such serve as the natural modes of auditory perception.
Also depicted in the chart is the likely role of degeneracy for
the auditory eigenfunction as suggested by the band pass
kernel work cited above [11-15]. This is compared with the
known repeated eigenvalues of the Hermite functions (only
four eigenvalues) [34] when diagonalizing the infinite con-
tinuous Fourier transform operator and the fact that deriva-
tives of Fourier series basis functions are again Fourier
series basis functions. Thus the auditory eigenfunction
(whose properties can vary somewhat responsive to incor-
porating the transitional aspects depicted in FIG. 15) likely
share attributes of the Fourier series basis functions typically
associated with sound and the Hermite series basis functions
associated with joint time-frequency spaces and analysis.
Not shown in the chart is the likely inheritance of double
orthogonality which, as discussed, offers possible roles in
models of critical-band attributes of human hearing.
8. Numerical Calculation of Auditory Eigenfunctions

Based on the above, the invention provides for numeri-
cally approximating, on a computer or mathematical pro-
cessing device, an eigenfunction equation representing a
model of human hearing, the model comprising a band pass
operation with a bandwidth comprised by the frequency
range of human hearing and a time-limiting operation
approximating the duration of the time correlation window
of human hearing. In an embodiment the invention numeri-
cally calculates an approximation to each of a plurality of
eigenfunction from at least aspects of the eigenfunction
equation. In an embodiment the invention stores said
approximation to each of a plurality of eigenfunction for use
at a later time. FIG. 125 depicts the above

Below an example for numerically calculating, on a
computer or mathematical processing device, an approxi-
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mation to each of a plurality of eigenfunction to be used as
an auditory eigenfunction. Mathematical software programs
such as Mathematica™ [21] and MATLAB™ and associ-
ated techniques that can be custom coded (for example as in
[54]) can be used. Slepian’s own 1968 numerical techniques
[25] as well as more modern methods (such as adaptations
of the methods in [26]) can be used.

In an embodiment the invention provides for the eigen-
function equation representing a model of human hearing to
be an adaptation of Slepian’s band pass-kernel variant of the
integral equation satisfied by angular prolate spheroidal
wavefunctions.

In an embodiment the invention provides for the approxi-
mation to each of a plurality of eigenfunction to be numeri-
cally calculated following the adaptation of the Morrison
algorithm described in Section 8.

In an embodiment the invention provides for the eigen-
function equation representing a model of human hearing to
be an adaptation of Slepian’s band pass-kernel variant of the
integral equation satisfied by angular prolate spheroidal
wavefunctions, and further that the approximation to each of
a plurality of eigenfunction to be numerically calculated
following the adaptation of the Morrison algorithm
described below. FIG. 13 provides a flowchart of the exem-
plary adaptation of the Morrison algorithm. The equations
used by Morrison in the paper [12] are provided to the left
of the equation with the prefix “M.”

Specifically, Morrison ([12], top page 18) describes “a
straightforward, though lengthy, numerical procedure”
through which eigenfunction of the integral equation K[u
(O]=hu(t) with

M 4.5)
' 24
Klu(n] = f Pap(l — s)u(s)ds and
—1
™M 1.5
sinbr (25)
Pap(l) = bt cosar,a > b >0

may be numerically approximated in the case of degeneracy
under the vanishing conditions u(x1)=0.

The procedure starts with a value of b® that is given. A
value is then chosen for a®. The next step is to find
eigenvalues y(a®,b?) and d(a®,b?), such that Lu=0, where
L[u(t)] is given by Eq. (M 3.15), and u is subject to Egs.
(3.11), (3.13), (3.14), (4.1), and (4.2.even)/(4.2.0dd).

(M 3.11)u(x1)=0 (26)
(M 3.13)u(t)=u(-1), or u(t)=-u(-1) @7
(M 314" ()=u(1) (30)
(MALp" (L)=[Voy(y=1)~(@+57)] (1) 3D
(M 4.2.even)u(03y,8)=0=u"(0;y,8), if u is even (32)
(M 4.2.0dd)u(0;y,8)=0=u"(03y,8), if u is odd 33)

The next step is to numerically integrate Lz u=0 from
t=1 to t=0, where
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M 4.3)

# u (34)
Ly, [u(D] = P[“ - rz)?

+ %{[y+ (@ + b1 —rz)]%} +

[5 - - bz)zrz]u.

The next step is to numerically minimize (to zero) {[u'(0;
¥, OP+[u™(0; v, )17}, or {[u(0y,8)1*+[u"(0:y,8)]*}, accord-
ingly as u is to be even or odd, as functions of y and 5. (Note
there is a typo in this portion of Morrison’s paper wherein
the character “y” is printed rather than the character “y;” this
was pointed out by Seung E. Lim)

Having determined y and J, the next step is to straight-

forwardly compute the other solution v from Lzp,v=0 for

(M 3.15)
d ., du (35)
Lgp, [v(D)] = VEI[(l =T )]W -
[, Tzdzv - dud®v  dvdiu
‘A E T NG )t

2y + (@® + b1 - rz)](v% - u%]

wherein v has the same parity as u.

Then, as the next step, tests are made for the condition of
Eq. (4.7) or Eq. (4.8), holds, which of these being deter-
mined by the value of v(1):

(M 4.7)w(1)=0 and [_,'p, »(1-s)u(s)ds=0 = v=0 36)
(M 4.8)v(1)=0 and |_,"'[p,5"(1-5)~YPa,'(1-5)]uls)
ds=0—> v=0 37)

If neither condition is met, the value of a® must be
accordingly adjusted to seek convergence, and the above
procedure repeated, until the condition of Eq. (4.7) or Eq.
(4.8), holds (which of these being determined by the value
of v(1)).

9. Expected Utility of an Auditory Eigenfunction Hilbert
Space Model for Human Hearing

As is clear to one familiar with eigensystems, the collec-
tion of eigenfunction is the natural coordinate system within
the space of all functions (here, signals) permitted to exist
within the conditions defining the eigensystem. Addition-
ally, to the extent the eigensystem imposes certain attributes
on the resulting Hilbert space, the eigensystem effectively
defines the aforementioned “rose colored glasses™ through
which the human experience of hearing is observed.

Human hearing is a very sophisticated system and audi-
tory language is obviously entirely dependent on hearing.
Tone-based frameworks of Ohm, Helmholtz, and Fourier
imposed early domination on the understanding of human
hearing despite the contemporary observations to the con-
trary by Seebeck’s framing in terms time-limited stimulus
[16]. More recently, the time/frequency localization proper-
ties of wavelets have moved in to displace portions of the
long standing tone-based frameworks. In parallel, empiri-
cally-based models such as critical band theory and loud-
ness/pitch tradeoffs have co-developed. A wide range of
these and yet other models based on emergent knowledge in
areas such as neural networks, biomechanics and nervous
system processing have also emerged (for example, as
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surveyed in [2,17-19]. All these have their individual respec-
tive utility, but the Hilbert space model could provide new
additional insight.

FIG. 14 provides a representation of macroscopically
imposed models (such as frequency domain), fitted isolated
models (such as critical band and loudness/pitch interdepen-
dence), and bottom-up biomechanical dynamics models.
Unlike these macroscopically imposed models, the Hilbert
space model is built on three of the most fundamental
empirical attributes of human hearing:

the approximate 20 Hz-20 KHz frequency range of audi-
tory perception [1];

the approximate 50 msec temporal-correlation window of
auditory perception (for example “time constant” in
[2]);

the approximate wide-range linearity (modulo post-sum-
ming logarithmic amplitude perception, nonlinearity
explanations of beat frequencies, etc) when several
signals are superimposed [1,2].

FIG. 15 shows how the Hilbert space model may be able
to predict aspects of the models of FIG. 14. FIG. 16 depicts
column-wise classifications among these classical auditory
perception models wherein the auditory eigenfunction for-
mulation and attempts to employ the Slepian lowpass kernel
formulation) could be therein treated as examples of “fitted
isolated models.”.

FIG. 17 shows an extended formulation of the Hilbert
space model to other aspects of hearing, such as logarithmic
senses of amplitude and pitch, and its role in representing
observational, neurological process, and portions of auditory
experience domains.

Further, as the Hilbert space model is, by its very nature,
defined by the interplay of time limiting and band-pass
phenomena, it is possible the model may provide important
new information regarding the boundaries of temporal varia-
tion and perceived frequency (for example as may occur in
rapidly spoken languages, tonal languages, vowel guide
[6-8], “auditory roughness™ [2], etc.), as well as empirical
formulations (such as critical band theory, phantom funda-
mental, pitch/loudness curves, etc.) [1,2].

The model may be useful in understanding the informa-
tion rate boundaries of languages, complex modulated ani-
mal auditory communications processes, language evolu-
tion, and other linguistic matters. Impacts in phonetics and
linguistic areas may include:

Empirical phonetics (particularly in regard to tonal lan-
guages, vowel-glide [6-8], and rapidly-spoken lan-
guages); and

Generative linguistics (relative optimality of language
information rates, phoneme selection, etc.).

Together these form compelling reasons to at least take a
systematic, psychoacoustics-aware, deep hard look at this
band-pass time-limiting eigensystem mathematics, what it
may say about the properties of hearing, and—to the extent
the model comprises a natural coordinate system for human
hearing—what applications it may have to linguistics, pho-
netics, audio processing, audio compression, and the like.

There are at least two ways the Hilbert space model can
be applied to hearing:

a wideband version wherein the model encompasses the

entire audio range (as described thus far); and

an aggregated, multiple parallel narrow-band channel
version wherein the model encompasses multiple
instances of the Hilbert space, each corresponding to an
effectively associated ‘critical band’[2].

FIG. 18 depicts an aggregated multiple parallel narrow-

band channel model comprising multiple instances of the
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Hilbert space, each corresponding to an effectively associ-
ated ‘critical band.” In the latter, narrow-band partitions of
the auditory frequency band and represent each of these with
a separate band-pass kernel. The full auditory frequency
band is thus represented as an aggregation of these smaller
narrow-band band-pass kernels.

The bandwidth of the kernels may be set to that of
previously determined critical bands contributed by physi-
cist Fletcher in the 1940’s [28] and subsequently institution-
alized in psychoacoustics. The partitions can be of either of
two cases—one where the time correlation window is the
same for each band, and variations of a separate case where
the duration of time correlation window for each band-pass
kernel is inversely proportional to the lowest and/or center
frequency of each of the partitioned frequency bands. As
pointed out earlier, Slepian indicated the solutions to the
band-pass variant would inherit the relatively rare doubly-
orthogonal property of PSWFs ([3], third-to-last sentence).
The invention provides for an adaptation of doubly-orthogo-
nal, for example employing the methods of [29], to be
employed here, for example as a source of approximate
results for a critical band model.

Finally, in regards to the expected utility of an auditory
eigenfunction Hilbert space model for human hearing, FIG.
19 depicts an auditory perception model relating to speech
somewhat adapted from the model of FIG. 17. In this model,
incoming acoustic audio is provided to a human hearing
audio transduction and hearing perception operations whose
outcomes and internal signal representations are modeled
with an auditory eigenfunction Hilbert space model frame-
work. The model results in an auditory eigenfunction rep-
resentation of the perceived incoming acoustic audio. (Later,
in the context of audio encoding with auditory eigenfunction
basis functions, exemplary approaches for implementing
such a auditory eigenfunction representation of the percep-
tion-modeled incoming acoustic audio will be given, for
example in conjunction with future-described FIG. 26a,
which provides a stream of time-varying coefficients.) Con-
tinuing with the model depicted in FIG. 19, the result of the
hearing perception operation is a time-varying stream of
symbols and/or parameters associated with an auditory
eigenfunction representation of incoming audio as it is
perceived by the human hearing mechanism. This time-
varying stream of symbols and/or parameters is directed to
further cognitive parsing and processing. This model can be
used employed in various applications, for example, those
involving speech analysis and representation, high-perfor-
mance audio encoding, etc.

10. Exemplary Human Testing Approaches and Facilities

The invention provides for rendering the eigenfunction as
audio signals and to develop an associated signal handling
and processing environment.

FIG. 20 depicts an exemplary arrangement by which a
stream of time-varying coeflicients are presented to a syn-
thesis basis function signal bank enabled to render auditory
eigenfunction basis functions by at least time-varying ampli-
tude control. In an embodiment the stream of time-varying
coeflicients can also control or be associated with aspects of
basis function signal initiation timing. The resulting ampli-
tude controlled (and in some embodiments, initiation timing
controlled) basis function signals are then summed and
directed to an audio output. In some embodiments, the
summing may provide multiple parallel outputs, for
example, as may be used in stereo audio output or the
rendering of musical audio timbres that are subsequently
separately processed further.
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The exemplary arrangement of FIG. 20, and variations on
it apparent to one skilled in the art, can be used as a step or
component within an application.

The exemplary arrangement of FIG. 20, and variations on
it apparent to one skilled in the art, can also be used as a step
or component within a human testing facility that can be
used to study hearing, sound perception, language, subjec-
tive properties of auditory eigenfunction, applications of
auditory eigenfunction, etc. FIG. 21 depicts an exemplary
human testing facility capable of supporting one or more of
these types of study and application development activities.
In the left column, controlled real-time renderings, ampli-
tude scaling, mixing and sound rendering are performed and
presented for subjective evaluation. Regarding the center
column, all of the controlled operations in the left column
may be operated by an interactive user interface environ-
ment, which in turn may utilize various types of automatic
control (file streaming, even sequencing, etc.). Regarding
the right column, the interactive user interface environment
may be operated according to, for example, by an experi-
mental script (detailing for example a formally designed
experiment) and/or by open experimentation. Experiment
design and open experimentation can be influenced,
informed, directed, etc. by real-time, recorded, and/or sum-
marized outcomes of aforementioned subjective evaluation.

As described just above, the exemplary arrangement of
FIG. 21 can be implemented and used in a number of ways.
One of the first uses would be for the basic study of the
auditory eigenfunction themselves. An exemplary initial
study plan could, for example, comprise the following steps:

A first step is to implement numerical representations,
approximations, or sampled versions of at least a first few
eigenfunction which can be obtained and to confirm the
resulting numerical representations as adequate approximate
solutions. Mathematical software programs such as Math-
ematica™ [21] and MATLLAB™ and associated techniques
that can be custom coded (for example as in [54]) can be
used. Slepian’s own 1968 numerical techniques [25] as well
as more modern methods (such as adaptations of the meth-
ods in [26]) can be used. A GUI-based user interface for the
resulting system can be provided.

A next step is to render selected eigenfunction as audio
signals using the numerical representations, approximations,
or sampled versions of model eigenfunction produced in an
earlier activity. In an embodiment, a computer with a sound
card may be used. Sound output will be presentable to
speakers and headphones. In an embodiment, the headphone
provisions may include multiple headphone outputs so two
or more project participants can listen carefully or binaurally
at the same time. In an embodiment, a gated microphone mix
may be included so multiple simultaneous listeners can
exchange verbal comments yet still listen carefully to the
rendered signals.

In an embodiment, an arrangement wherein groups of
eigenfunction can be rendered in sequences and/or with
individual volume-controlling envelopes will be imple-
mented.

In an embodiment, a comprehensive customized control
environment is provided. In an embodiment, a GUI-based
user interface is provided.

In a testing activity, human subjects may listen to audio
renderings with an informed ear and topical agenda with the
goal of articulating meaningful characterizations of the
rendered audio signals. In another exemplary testing activ-
ity, human subjects may deliberately control rendered mix-
tures of signals to obtain a desired meaningful outcome. In
another exemplary testing activity, human subjects may
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control the dynamic mix of eigenfunction with user-pro-
vided time-varying envelopes. In another exemplary testing
activity, each ear of human subjects may be provided with
a controlled distinct static or dynamic mix of eigenfunction.
In another exemplary testing activity, human subjects may
be presented with signals empirically suggesting unique
types of spatial cues [32, 33]. In another exemplary testing
activity, human subjects may control the stereo signal ren-
derings to obtain a desired meaningful outcome.

11. Potential Applications

There are many potential commercial applications for the
model and eigensystem; these include:

User/machine interfaces;

Audio compression/encoding;

Signal processing;

Data signification;

Speech synthesis; and

Music timbre synthesis.

The underlying mathematics is also likely to have appli-
cations in other fields, and related knowledge in those other
fields linked to by this mathematics may find applications in
psychoacoustics, phonetics, and linguistics. Impacts on
wider academic areas may include:

Perceptual science (including temporal effects in vision
such as shimmering and frame-by-frame fusion in
motion imaging);

Physics;

Theory of differential equations;

Tools of approximation;

Orthogonal polynomials;

Spectral analysis, including wavelet and time-frequency
analysis frameworks; and

Stochastic processes.

Exemplary applications are considered in more detail below.
11.1 Speech Models and Optimal Language Design Appli-
cations

In an embodiment, the eigensystem may be used for
speech models and optimal language design. In that the
auditory perception eigenfunction represent or provide a
mathematical coordinate system basis for auditory percep-
tion, they may be used to study properties of language and
animal vocalizations. The auditory perception eigenfunction
may also be used to design one or more languages optimized
from at least the perspective of auditory perception.

In particular, as the auditory perception eigenfunction is,
by its very nature, defined by the interplay of time limiting
and band-pass phenomena, it is possible the Hilbert space
model eigensystem may provide important new information
regarding the boundaries of temporal variation and per-
ceived frequency (for example as may occur in rapidly
spoken languages, tonal languages, vowel glides [6-8],
“auditory roughness” [2], etc.), as well as empirical formu-
lations (such as critical band theory, phantom fundamental,
pitch/loudness curves, etc.) [1,2].

FIG. 22a depicts a speech production model for non-tonal
spoken languages. Here typically emotion, expression, and
prosody control pitch, but phoneme information does not.
Instead, phoneme information controls variable signal fil-
tering provided by the mouth, tongue, etc.

FIG. 224 depicts a speech production model for tonal
spoken languages. Here phoneme information does control
the pitch, causing pitch modulations. When spoken rela-
tively quickly, the interplay among time and frequency
aspects can become more prominent.

In both cases, rapidly spoken language involves rapid
manipulation of the variable signal filter processes of the
vocal apparatus. The resulting rapid modulations of the
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variable signal filter processes of the vocal apparatus for
consonant and vowel production also create an interplay
among time and frequency aspects of the produced audio.

FIG. 23 depicts a bird call and/or bird song vocal pro-
duction model, albeit slightly anthropomorphic. Here, too, is
a very rich environment involving interplay among time and
frequency aspects, especially for rapid bird call and/or bird
song vocal “phoneme” production. The situation is slightly
more complex in that models of bird vocalization often
include two pitch sources.

FIG. 24 depicts a general speech and vocalization pro-
duction model that emphasizes generalized vowel and
vowel-like-tone production. Rapid modulations of the vari-
able signal filter processes of the vocal apparatus for vowel
production also create an interplay among time and fre-
quency aspects of the produced audio. Of particular interest
are vowel guide [6-8] (including diphthongs and semi-
vowels) where more temporal modulation occurs than in
ordinary static vowels. This model may also be applied to
the study or synthesis of animal vocal communications and
in audio synthesis in electronic and computer musical instru-
ments.

FIG. 25 depicts an exemplary arrangement for the study
and modeling of various aspects of speech, animal vocal-
ization, and other applications. The basic arrangement
employs the general auditory eigenfunction hearing repre-
sentation model of FIG. 19 (lower portion of FIG. 25) and
the general speech and vocalization production model of
FIG. 24 (upper portion of FIG. 25). In one embodiment or
application setting, the production model akin to FIG. 24 is
represented by actual vocalization or other incoming audio
signals, and the general auditory eigenfunction hearing
representation model akin to FIG. 19 is used for analysis. In
another embodiment or application setting, the production
model akin to FIG. 24 is synthesized under direct user or
computer control, and the general auditory eigenfunction
hearing representation model akin to FIG. 19 is used for
associated analysis. For example, aspects of audio signal
synthesis via production model akin to FIG. 24 can be
adjusted in response to the analysis provided by the general
auditory eigenfunction hearing representation model akin to
FIG. 19.

Further as to the exemplary arrangements of FIG. 24 and
FIG. 25, FIG. 26a depicts an exemplary analysis arrange-
ment wherein incoming audio information (such as an audio
signal, audio stream, audio file, etc.) is provided in digital
form S(n) to a filter analysis bank comprising filters, each
filter comprising filter coefficients that are selectively tuned
to a finite collection of separate distinct auditory eigenfunc-
tion. The output of each filter is a time varying stream or
sequence of coefficient values, each coefficient reflecting the
relative amplitude, energy, or other measurement of the
degree of presence of an associated auditory eigenfunction.
As a particular or alternative embodiment, the analysis
associated with each auditory eigenfunction operator ele-
ment depicted in FIG. 26a can be implemented by perform-
ing an inner product operation on the combination of the
incoming audio information and the particular associated
auditory eigenfunction. The exemplary arrangement of FIG.
26a can be used as a component in the exemplary arrange-
ment of FIG. 25.

Further as to the exemplary arrangements of FIG. 19 and
FIG. 25, FIG. 265 depicts an exemplary synthesis arrange-
ment, akin to that of FIG. 20, by which a stream of
time-varying coeflicients are presented to a synthesis basis
function signal bank enabled to render auditory eigenfunc-
tion basis functions by at least time-varying amplitude
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control. In an embodiment the stream of time-varying coef-
ficients can also control or be associated with aspects of
basis function signal initiation timing. The resulting ampli-
tude controlled (and in some embodiments, initiation timing
controlled) basis function signals are then summed and
directed to an audio output. In some embodiments, the
summing may provide multiple parallel outputs, for example
as may be used in stereo audio output or the rendering of
musical audio timbres that are subsequently separately pro-
cessed further. The exemplary arrangement of FIG. 265 can
be used as a component in the exemplary arrangement of
FIG. 25.

11.2 Data Sonification Applications

In an embodiment, the eigensystem may be used for data
signification, for example as taught in a pending patent in
multichannel signification (U.S. 61/268,856) and another
pending patent in the use of such signification in a complex
GIS system for environmental science applications (U.S.
61/268,873). The invention provides for data signification to
employ auditory perception eigenfunction to be used as
modulation waveforms carrying audio representations of
data. The invention provides for the audio rendering
employing auditory eigenfunction to be employed in a
signification system.

FIG. 27 shows a data signification embodiment wherein a
native data set is presented to normalization, shifting, (non-
linear) warping, and/or other functions, index functions, and
sorting functions. In some embodiments provided for by the
invention, two or more of these functions may occur in
various orders as may be advantageous or required for an
application and produce a modified dataset. In some
embodiments provided for by the invention, aspects of these
functions and/or order of operations may be controlled by a
user interface or other source, including an automated data
formatting element or an analytic model. The invention
further provides for embodiments wherein updates are pro-
vided to a native data set.

FIG. 28 shows a data signification embodiment wherein
interactive user controls and/or other parameters are used to
assign an index to a data set. The resultant indexed data set
is assigned to one or more parameters as may be useful or
required by an application. The resulting indexed parameter
information is provided to a sound rendering operation
resulting in a sound (audio) output. For traditional types of
parameterized sound synthesis, mathematical software pro-
grams such as Mathematica™ [21] and MATLAB™ as well
as sound synthesis software programs such as CSound [22]
and associated techniques that can be custom coded (for
example as in [23,24]) can be used.

The invention provides for the audio rendering employing
auditory perception eigenfunction to be rendered under the
control of a data set. In embodiments provided for by the
invention, the parameter assignment and/or sound rendering
operations may be controlled by interactive control or other
parameters. This control may be governed by a metaphor
operation useful in the user interface operation or user
experience. The invention provides for the audio rendering
employing auditory perception eigenfunction to be rendered
under the control of a metaphor.

FIG. 29 shows a “multichannel signification” employing
data-modulated sound timbre classes set in a spatial meta-
phor stereo soundfield. The outputs may be stereo, four-
speaker, or more complex, for example employing 2D
speaker, 2D headphone audio, or 3D headphone audio so as
to provide a richer spatial-metaphor signification environ-
ment. The invention provides for the audio rendering
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employing auditory perception eigenfunction in any of a
monaural, stereo, 2D, or 3D sound field.

FIG. 30 shows a signification rendering embodiment
wherein a dataset is provided to exemplary signification
mappings controlled by interactive user interface. Sonifica-
tion mappings provide information to signification drivers,
which in turn provides information to internal audio render-
ing and/or a control signal (such as MIDI) driver used to
control external sound rendering. The invention provides for
the signification to employ auditory perception eigenfunc-
tion to produce audio signals for the signification in internal
audio rendering and/or external audio rendering. The inven-
tion provides for the audio rendering employing auditory
perception eigenfunction under MIDI control.

FIG. 31 shows an exemplary embodiment of a three-
dimensional partitioned timbre space. Here the timbre space
has three independent perception coordinates, each parti-
tioned into two regions. The partitions allow the user to
sufficiently distinguish separate channels of simultaneously
produced sounds, even if the sounds time modulate some-
what within the partition as suggested by FIG. 32. The
invention provides for the signification to employ auditory
perception eigenfunction to produce and structure at least a
part of the partitioned timbre space.

FIG. 32 depicts an exemplary trajectory of time-modu-
lated timbral attributes within a partition of a timbre space.
Alternatively, timbre spaces may have 1, 2, 4 or more
independent perception coordinates. The invention provides
for the signification to employ auditory perception eigen-
function to produce and structure at least a portion of the
timbre space so as to implement user-discernable time-
modulated timbral through a timbre space.

The invention provides for the signification to employ
auditory perception eigenfunction to be used in conjunction
with groups of signals comprising a harmonic spectral
partition. An example signal generation technique providing
a partitioned timber space is the system and method of U.S.
Pat. No. 6,849,795 entitled “Controllable Frequency-Reduc-
ing Cross-Product Chain.” The harmonic spectral partition
of the multiple cross-product outputs do not overlap. Other
collections of audio signals may also occupy well-separated
partitions within an associated timbre space. In particular,
the invention provides for the signification to employ audi-
tory perception eigenfunction to produce and structure at
least a part of the partitioned timbre space.

Through proper sonic design, each timbre space coordi-
nate may support several partition boundaries, as suggested
in FIG. 33. FIG. 33 depicts the partitioned coordinate system
of a timbre space wherein each timbre space coordinate
supports a plurality of partition boundaries. Further, proper
sonic design can produce timbre spaces with four or more
independent perception coordinates. The invention provides
for the signification to employ auditory perception eigen-
function to produce and structure at least a part of the
partitioned timbre space.

FIG. 34 depicts a data visualization rendering provided by
a user interface of a GIS system depicting am aerial or
satellite map image for a studying surface water flow path
through a complex mixed-use area comprising overlay
graphics such as a fixed or animated flow arrow. The system
may use data kriging to interpolate among one or more of
stored measured data values, real-time incoming data feeds,
and simulated data produced by calculations and/or numeri-
cal simulations of real world phenomena.

In an embodiment, a system may overlay visual plot items
or portions of data, geometrically position the display of
items or portions of data, and/or use data to produce one or
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more signification renderings. For example, in an embodi-
ment a signification environment may render sounds accord-
ing to a selected point on the flow path, or as a function of
time as a cursor moves along the surface water flow path at
a specified rate. The invention provides for the signification
to employ auditory perception eigenfunction in the produc-
tion of the data-manipulated sound.

11.3 Audio Encoding Applications

In an embodiment, the eigensystem may be used for audio
encoding and compression.

FIG. 35a depicts a filter-bank encoder employing
orthogonal basis functions. In some embodiments, a down-
sampling or decimation operation is used to manage, struc-
ture, and/or match data rates in and out of the depicted
arrangement. The invention provides for auditory perception
eigenfunction to be used as orthogonal basis functions in an
encoder. The encoder may be a filter-bank encoder.

FIG. 35b depicts a signal-bank decoder employing
orthogonal basis functions. In some embodiments an up-
sampling or interpolation operation is used to manage,
structure, and/or match data rates in and out of the depicted
arrangement. The invention provides for auditory perception
eigenfunction to be used as orthogonal basis functions in a
decoder. The decoder may be a signal-bank decoder.

FIG. 36a depicts a data compression signal flow wherein
an incoming source data stream is presented to compression
operations to produce an outgoing compressed data stream.
The invention provides for the outgoing data vector of an
encoder employing auditory perception eigenfunction as
basis functions to serve as the aforementioned source data
stream.

The invention also provides for auditory perception eigen-
function to provide a coefficient-suppression framework for
at least one compression operation.

FIG. 365 depicts a decompression signal flow wherein an
incoming compressed data stream is presented to decom-
press operations to produce an outgoing reconstructed data
stream. The invention provides for the outgoing recon-
structed data stream to serve as the input data vector for a
decoder employing auditory perception eigenfunction as
basis functions.

In an encoder embodiment, the invention provides meth-
ods for representing audio information with auditory eigen-
function for use in conjunction with human hearing. An
exemplary method is provided below and summarized in
FIG. 37a.

An exemplary first step involves retrieving a plurality of
approximations, each approximation corresponding
with each of a plurality of eigenfunction numerically
calculated at an earlier time, each approximation hav-
ing resulted from numerically approximating, on a
computer or mathematical processing device, an eigen-
function equation representing a model of human hear-
ing, the model comprising a band pass operation with
a bandwidth comprised by the frequency range of
human hearing and a time-limiting operation approxi-
mating the duration of the time correlation window of
human hearing;

An exemplary second step involves receiving incoming
audio information.

An exemplary third step involves using the approximation
to each of a plurality of eigenfunction as basis functions
for representing the incoming audio information by
mathematically processing the incoming audio infor-
mation together with each of the retrieved approxima-
tions to compute the value of a coefficient that is
associated with the corresponding eigenfunction and
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associated the time of calculation, the result comprising
a plurality of coefficient values associated with the time
of calculation.

The plurality of coefficient values can be used to represent
at least a portion of the incoming audio information for
an interval of time associated with the time of calcu-
lation. Embodiments may further comprise one or more
of the following additional aspects:

The retrieved approximation associated with each of a
plurality of eigenfunction is a numerical approximation
of a particular eigenfunction;

The mathematically processing comprises an inner-prod-
uct calculation;

The retrieved approximation associated with each of a
plurality of eigenfunction is a filter coefficient;

The mathematically processing comprises a filtering cal-
culation.

The incoming audio information can be an audio signal,
audio stream, or audio file. In a decoder embodiment, the
invention provides a method for representing audio infor-
mation with auditory eigenfunction for use in conjunction
with human hearing. An exemplary method is provided
below and summarized in FIG. 375.

An exemplary first step involves retrieving a plurality of
approximations, each approximation corresponding
with each of a plurality of eigenfunction numerically
calculated at an earlier time, each approximation hav-
ing resulted from numerically approximating, on a
computer or mathematical processing device, an eigen-
function equation representing a model of human hear-
ing, the model comprising a band pass operation with
a bandwidth comprised by the frequency range of
human hearing and a time-limiting operation approxi-
mating the duration of the time correlation window of
human hearing.

An exemplary second step involves receiving incoming
coefficient information.

An exemplary third step involves using the approximation
to each of a plurality of eigenfunction as basis functions
for producing outgoing audio information by math-
ematically processing the incoming coefficient infor-
mation together with each of the retrieved approxima-
tions to compute the value of an additive component to
an outgoing audio information associated an interval of
time, the result comprising a plurality of coefficient
values associated with the time of calculation.

The plurality of coefficient values can be used to produce
at least a portion of the outgoing audio information for
an interval of time. Embodiments may further comprise
one or more of the following additional aspects:

The retrieved approximation associated with each of a
plurality of eigenfunction is a numerical approximation
of a particular eigenfunction;

The mathematically processing comprises an amplitude
calculation;

The retrieved approximation associated with each of a
plurality of eigenfunction is a filter coefficient;

The mathematically processing comprises a filtering cal-
culation.

The outgoing audio information can be an audio signal,

audio stream, or audio file.
11.4 Music Analysis and Electronic Musical Instrument
Applications

In an embodiment, the auditory eigensystem basis func-
tions may be used for music sound analysis and electronic
musical instrument applications. As with tonal languages, of
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particular interest is the study and synthesis of musical
sounds with rapid timbral variation.

In an embodiment, an adaptation of arrangements of FIG.
25 and/or FIG. 26a may be used for the analysis of musical
signals.

In an embodiment, an adaptation of arrangement of FIG.
19 and/or FIG. 265 for the synthesis of musical signals.

CLOSING

While the invention has been described in detail with
reference to disclosed embodiments, various modifications
within the scope of the invention will be apparent to those
of ordinary skill in this technological field. It is to be
appreciated that features described with respect to one
embodiment typically can be applied to other embodiments.

The invention can be embodied in other specific forms
without departing from the spirit or essential characteristics
thereof. The present embodiments are therefore to be con-
sidered in all respects as illustrative and not restrictive, the
scope of the invention being indicated by the appended
claims rather than by the foregoing description, and all
changes which come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein. Therefore, the invention properly is to be
construed with reference to the claims.
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What is claimed is:

1. A computer numerical processing method for encoding
audio information for use in conjunction with human hear-
ing, the method comprising:

retrieving approximations of each of a plurality of eigen-

functions and encoding information associated with the
retrieved approximations from at least one aspect of an
eigenfunction equation representing a model of human
hearing, wherein the model comprises a bandpass
operation with a bandwidth including a frequency
range of human hearing and a time-limiting operation
approximating a time duration correlation window of
human hearing;

receiving incoming audio information;

using the retrieved approximations to each of the plurality

of eigenfunctions as basis functions for representing
incoming audio information by mathematically pro-
cessing the incoming audio information together with
the retrieved approximations to compute a value of a
coefficient that is associated with a corresponding
eigenfunction, a result comprising a plurality of coef-
ficient values;

outputting the plurality of coefficient values for use at a

later time, wherein the plurality of coefficient values
represents the incoming audio information.

2. The method of claim 1 wherein the eigenfunction
equation is a Slepian’s bandpass-kernel integral equation.

3. The method of claim 1 wherein the retrieved approxi-
mations to each of the plurality of eigenfunctions comprises
an approximation of a convolution of a prolate spheroidal
wavefunction with a trigonometric function.

4. The method of claim 1 wherein the retrieved approxi-
mations associated with each of the plurality of eigenfunc-
tions is a numerical approximation of a particular eigen-
function.

5. The method of claim 1 wherein the mathematically
processing comprises an inner-product calculation.

6. The method of claim 1 wherein the encoding informa-
tion associated with the retrieved approximations comprises
filter coefficients.

7. The method of claim 1 wherein the mathematically
processing comprises a filtering calculation.

8. The method of claim 1 wherein the incoming audio
information comprises an audio signal.

9. The method of claim 1 wherein the incoming audio
information comprises an audio stream.

10. The method of claim 1 wherein the incoming audio
information comprises 