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ITERATIVE APPROXIMATION
ENVIRONMENTS FOR MODELING THE
EVOLUTION OF AN IMAGE PROPAGATING
THROUGH A PHYSICAL MEDIUM IN
RESTORATION AND OTHER APPLICATIONS

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a reissue application of U.S. Pat. No.
7,039,252 B2, which is a continuation-in-part (C1P) of U.S.
application Ser. No. 10/665,439, filed Sep. 18, 2003, rnow
U.S. Pat. No. 7,054,504, which is a CIP application of U.S.
application Ser. No. 09/512,775, filed Feb. 25, 2000, now
U.S. Pat. No. 6,687,418, which claims benefit of priority of
U.S. provisional applications Ser. Nos. 60/121,680 and
60/121,958, each filed on Feb. 25, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to optical signal processing, and
more particularly to the use of fractional Fourier transform
properties of lenses to correct the effects of lens misfocus in
photographs, video, and other types of captured images.

2. Discussion of the Related Art

A number of references are cited herein; these are pro-
vided in a numbered list at the end of the detailed description
of the preferred embodiments. These references are cited at
various locations throughout the specification using a refer-
ence number enclosed in square brackets.

The Fourier transforming properties of simple lenses and
related optical elements is well known and heavily used in a
branch of engineering known as Fourier optics [1, 2]. Classi-
cal Fourier optics [1, 2, 3, 4] utilize lenses or other means to
obtain a two-dimensional Fourier transform of an optical
wavefront, thus creating a Fourier plane at a particular spa-
tial location relative to an associated lens. This Fourier plane
includes an amplitude distribution of an original two-
dimensional optical image, which becomes the two-
dimensional Fourier transform of itself. In the far simpler
area of classical geometric optics [1, 3], lenses and related
objects are used to change the magnification of a two-
dimensional image according to the geometric relationship
of the classical lens-law. It has been shown that between the
geometries required for classical Fourier optics and classical
geometric optics, the action of a lens or related object acts on
the amplitude distribution of images as the fractional power
of the two-dimensional Fourier transform. The fractional
power of the fractional. Fourier transform is determined by
the focal length characteristics of the lens, and the relative
spatial separation between a lens, source image, and an
observed image.

The fractional Fourier transform has been independently
discovered on various occasions over the years [5, 7, 8, 9,
10], and is related to several types of mathematical objects
such as the Bargmann transform [8] and the Hermite semi-
group [13]. As shown in [5], for example, the most general
form of optical properties of lenses and other related ele-
ments [1, 2, 3] can be transformed into a fractional Fourier
transform representation. This property has apparently been
rediscovered some years later and worked on steadily ever
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since (see for example [ 6]), expanding the number of optical
elements and situations covered. It is important to remark,
however, that the lens modeling approach in the latter ongo-
ing series of papers view the multiplicative phase term in the
true form of the fractional Fourier transform as a problem or
annoyance and usually omit it from consideration.

SUMMARY OF THE INVENTION

Correction of the effects of misfocusing in recorded or
real-time image data may be accomplished using fractional
Fourier transform operations realized optically,
computationally, or electronically. In some embodiments,
the invention extends the capabilities of using a power of the
fractional Fourier transform for correcting misfocused
images, to situations where phase information associated
with the original image misfocus is unavailable. For
example, conventional photographic and electronic image
capture, storage, and production technologies can only cap-
ture and process image amplitude information—the relative
phase information created within the original optical path is
lost. As will be described herein, the missing phase informa-
tion can be reconstructed and used when correcting image
misfocus.

In accordance with embodiments of the invention, a
method for approximating the evolution of images propagat-
ing through a physical medium is provided by calculating a
fractional power of a numerical operator. The numerical
operator may be defined by the physical medium and
includes a diagonalizable numerical linear operator raised to
a power (o). The method further includes representing a
plurality of images using an individual data array for each of
the images. The numerical operator may be represented with
a linear operator formed by multiplying an ordered similar-
ity transformation operator (P) by a correspondingly-
ordered diagonal operator (A), the result of which is multi-
plied by an approximate inverse (P~!) of the ordered
similarity transformation operator (P). Diagonal elements of
the correspondingly-ordered diagonal operator (A) may be
raised to the power () to produce a fractional power diago-
nal operator. The fractional power diagonal operator may be
multiplied by an approximate inverse of the ordered similar-
ity transformation operator (P~') to produce a first partial
result. In addition, the data array of one of the images may be
multiplied by the ordered similarity transformation operator
(P) to produce a modified data array. The modified data array
may then be multiplied by the first partial result to produce
the fractional power of the numerical operator. 1f desired, the
last-two multiplication operations may be repeated for each
of a plurality of images.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of
the present invention will become more apparent upon con-
sideration of the following description of preferred embodi-
ments taken in conjunction with the accompanying drawing
figures, wherein:

F1G. 1 is a block diagram showing a general lens arrange-
ment and associated image observation entity capable of
classical geometric optics, classical Fourier optics, and frac-
tional Fourier transform optics;

F1G. 2 is a block diagram showing an exemplary approach
for automated adjustment of fractional Fourier transform
parameters for maximizing the sharp edge content of a cor-
rected image, in accordance with one embodiment of the
present invention;

F1G. 3 is a block diagram showing a typical approach for
adjusting the fractional Fourier transform parameters to
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maximize misfocus correction of an image, in accordance
with one embodiment of the present invention;

FIG. 4 is a diagram showing a generalized optical envi-
ronment for implementing image correction in accordance
with the present invention;

F1G. 5 is a diagram showing focused and unfocused
image planes in relationship to the optical environment
depicted in FIG. 4;

FIG. 6 is a block diagram showing an exemplary image
misfocus correction process that also provides phase correc-
tions;

FIG. 7 is a diagram showing a more detailed view of the
focused and unfocused image planes shown in FIG. 5;

FIG. 8 is a diagram showing typical phase shifts involved
in the focused and unfocused image planes depicted in F1G.
3;

FIG. 9 shows techniques for computing phase correction
determined by the fractional Fourier transform applied to a
misfocused image;

FIG. 10 is a block diagram showing an exemplary image
misfocus correction process that also provides for phase
correction, in accordance with an alternative embodiment of
the invention;

FIG. 11 shows a diagonalizable matrix, tensor, or linear
operator acting on an underlying vector, matrix, tensor, or
function;

FIG. 12 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through
a physical medium, in accordance with embodiments of the
invention;

FIG. 13 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through
a physical medium, in accordance with alternative embodi-
ments of the invention.

F1G. 14 shows a simplified version of the equation
depicted in FIG. 11;

FIG. 15 shows an exemplary matrix;

FIGS. 16A through 16C are side views of a propagating
light or particle beam;

FIG. 16D is a top view of contours of constant radial
displacement with respect to the image center of paths asso-
ciated with the image propagation of an image;

FIG. 17 shows an exemplary matrix for a centered nor-
malized classical discrete Fourier transform;

FIG. 18A is a graph showing a frequency-domain output
of a non-centered classical discrete Fourier transform for an
exemplary signal;

FIG. 18B is a graph showing a frequency-domain output
of a centered classical discrete Fourier transform for the
same exemplary signal;

FI1G. 19 shows the coordinate indexing of an image having
a particular height and width; and

FIG. 20 is a block diagram showing the isolation and later
reassembly of quadrant portions of an original image.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following description, reference is made to the
accompanying drawing figures which form a part hereof,
and which show by way of illustration specific embodiments
of the invention. It is to be understood by those of ordinary
skill in this technological field that other embodiments may
be utilized, and structural, electrical, optical, as well as pro-
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cedural changes may be made without departing from the
scope of the present invention.

As used herein, the term “image” refers to both still-
images (such as photographs, video frames, video stills,
movie frames, and the like) and moving images (such as
motion video and movies). Many embodiments of the
present invention are directed to processing recorded or real-
time image data provided by an exogenous system, means,
or method. Presented image data may be obtained from a
suitable electronic display such as an LCD panel, CRT, LED
array, films, slides, illuminated photographs, and the like.
Alternatively or additionally, the presented image data may
be the output of some exogenous system such as an optical
computer or integrated optics device, to name a few. The
presented image data will also be referred to herein as the
image source.

If desired, the system may output generated image data
having some amount of misfocus correction. Generated
image data may be presented to a person, sensor (such as a
CCD image sensor, photo-transistor array, for example), or
some exogenous system such as an optical computer, inte-
grated optics device, and the like. The entity receiving gen-
erated image data will be referred to as an observer, image
observation entity, or observation entity.

Reference will first be made to F1G. 3 which shows a
general approach for adjusting the fractional Fourier trans-
form parameters to maximize the correction of misfocus in
an image. Details regarding the use of a fractional Fourier
transform (with adjusted parameters of exponential power
and scale) to correct image misfocus will be later described
with regard to FIGS. 1 and 2.

Original visual scene 301 (or other image source) may be
observed by optical system 302 (such as a camera and lens
arrangement) to produce original image data 303a. ln accor-
dance with some embodiments, optical system 302 may be
limited, misadjusted, or otherwise defective to the extent that
it introduces a degree of misfocus into the image represented
by the image data 303a. 1t is typically not possible or practi-
cal to correct this misfocus effect at optical system 302 to
produce a better focused version of original image data
303a. Misfocused original image data 303a may be stored
over time or transported over distance. During such a
process, the original image data may be transmitted,
converted, compressed, decompressed, or otherwise
degraded, resulting in an identical or perturbed version of
original image data 303b. It is this perturbed version of the
original image data that may be improved using the misfocus
correction techniques disclosed herein. Original and per-
turbed image data 303a, 303b may be in the form of an
electronic signal, data file, photography paper, or other
image form.

Original image data 303b may be manipulated
numerically, optically, or by other means to perform a frac-
tional Fourier transform operation 304 on the original image
data to produce resulting (modified) image data 305. The
parameters of exponential power and scale factors of the
fractional Fourier transform operation 304 may be adjusted
310 over some range of values, and each parameter setting
within this range may result in a different version of result-
ing image data 305. As the level of misfocus correction
progresses, the resulting image data 305 will appear more in
focus. The improvement in focus will generally be obvious
to an attentive human visual observer, and will typically be
signified by an increase in image sharpness, particularly at
any edges that appear in the image. Thus a human operator, a
machine control system, or a combination of each can com-
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pare a sequence of resulting images created by previously
selected parameter settings 310, and try a new parameter
setting for a yet another potential improvement.

For a human operator, this typically would be a matter of
adjusting a control and comparing images side by side
(facilitated by non-human memory) or, as in the case of a
microscope or telescope, by comparison facilitated purely
with human memory. For a machine, a systematic iterative
or other feedback control scheme would typically be used. In
F1G. 3, each of these image adjustments is generalized by
the steps and elements suggested by interconnected elements
306-309, although other systems or methods accomplishing
the same goal with different internal structure (for example,
an analog electronic circuit, optical materials, or chemical
process) are provided for and anticipated by the present
invention. For the illustrative general case of F1G. 3, result-
ing image data 305 for selected parameter settings 310 may
be stored in human, machine, or photographic memory 306,
along with the associated parameter settings, and compared
307 for the quality of image focus. Based on these
comparisons, subsequent high level actions 308 may be cho-
sen.

High level actions 308 typically require translation into
new parameter values and their realization, which may be
provided by parameter calculation and control 309. This pro-
cess may continue for some interval of time, some number of
resulting images 305, or some chosen or predetermined
maximum level of improvement. One or more “best choice”
resulting image data set or sets 305 may then be identified as
the result of the action and processes depicted in this figure.

With this high level description having been established,
attention is now directed to details of the properties and use
of a fractional Fourier transform (with adjusted parameters
of exponential power and scale) to correct misfocus in an
image and maximize correction of misfocus. This aspect of
the present invention will be described with regard to FIG. 1.

FIG. 1 is a block diagram showing image source 101, lens
102, and image observation entity 103. The term “lens” is
used herein for convenience, but it is to be understood that
the image misfocus correction techniques disclosed herein
apply equally to lens systems and other similar optical envi-
ronments. The image observation entity may be configured
with classical geometric optics, classical Fourier optics, or
fractional Fourier transform optics. The particular class of
optics (geometric, Fourier, or fractional Fourier) imple-
mented in a certain application may be determined using any
of the following:

separation distances 111 and 112;
the “focal length” parameter “f”” of lens 102;

the type of image source (lit object, projection screen,
etc.) in as far as whether a plane or spherical wave is
emitted.
As is well known, in situations where the source image is
a lit object and where distance 111, which shall be called
“a,” and distance 112, which shall be called “b,” fall into the
lens-law relationship, may be determined by the focal length
f:

1 M

which gives the geometric optics case. In this case, observed
image 103 is a vertically and horizontally inverted version of
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the original image from source 101, scaled in size by a mag-
nification factor m given by:

@

As previously noted, the Fourier transforming properties
of simple lenses and related optical elements is also well
known in the field of Fourier optics [2, 3]. Classical Fourier
optics [2, 3, 4, 5] involve the use of a lens, for example, to
take a first two-dimensional Fourier transform of an optical
wavefront, thus creating a Fourier plane at a particular spa-
tial location such that the amplitude distribution of an origi-
nal two-dimensional optical image becomes the two-
dimensional Fourier transform of itself. In the arrangement
depicted in F1G. 1, with a lit object serving as source image
101, the Fourier optics case may be obtained when a=b=f.

As described in [5], for cases where a, b, and f do not
satisfy the lens law of the Fourier optics condition above, the
amplitude distribution of source image 101, as observed at
observation entity 103, experiences the action of a non-
integer power of the Fourier transform operator. As
described in [ 5], this power, which shall be called a, varies
between 0 and 2 and is determined by an Arc-Cosine func-
tion dependent on the lens focal length and the distances
between the lens, image source, and image observer; specifi-
cally:

D) ®

2
a = —arccos|sgn(f —a)
n f

for cases where (f-a) and (f-b) share the same sign. There
are other cases which can be solved from the more primitive
equations in [5] (at the bottom of pages ThE4-3 and ThE4-
1). Note simple substitutions show that the lens law relation-
ship among a, b, and f indeed give a power of 2, and that the
Fourier optics condition of a=b=f give the power of 1, as
required.

The fractional Fourier transform properties of lenses typi-
cally cause complex but predictable phase and scale varia-
tions. These variations may be expressed in terms of Hermite
functions, as presented shortly, but it is understood that other
representations of the effects, such as closed-form integral
representations given in [ 5], are also possible and useful.

Various methods can be used to construct the fractional
Fourier transform, but to begin it is illustrative to use the
orthogonal Hermite functions, which as eigenfunctions
diagonalize the Fourier transform [17]. Consider the Her-
mite function [16] expansion [17, and more recently, 18] of
the two dimensional image amplitude distribution function.
In one dimension, a bounded (i.e., non-infinite) function k(x)
can be represented as an infinite sum of Hermite functions
{h,(x)} as:

& @
k() = anhy(x)

n=0

Since the function is bounded, the coefficients {a, } even-
tually become smaller and converge to zero. An image may
be treated as a two dimensional entity (for example, a two-
dimensional array of pixels), or it can be the amplitude varia
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tion of a translucent plate; in either case, the function may be
represented in a two-dimensional expansion such as:

2 & ®
k(x1, %) = 3 > apmha (50 (%2)

m=0n=0

For simplicity, the one dimensional case may be considered.
The Fourier transform action on Hermite expansion of the
function k(x) with series coefficients {a, } is given by [16]:

& ©
Fk(0] = ) (-D)"aphy(x)

n=0

Because of the diagonal eigenfunction structure, fractional
powers of the Fourier transform operator may be obtained by
taking the fractional power of each eigenfunction coeffi-
cient. The eigenfunction coefficients here are (-1)”. Complex
branching artifact ambiguities that arise from taking the
roots of complex numbers can be avoided by writing (i) as:

e—bc/2 (7)

Thus for a given power a, the fractional Fourier transform of
the Hermite expansion of the function k(x) with series coef-
ficients {a,} can be given by [5]:

= ®
Fk@] = ) e azha(x)

n=0

Note when a=1, the result is the traditional Fourier trans-
form above, and when a.=2, the result may be expressed as:

oo

Plk] = ) e ™aghy(x) = ) (=1 aphy(0) =
n=0

n=0

oo

> aha(-x) =k(-%)

n=0

due to the odd and even symmetry, respectively, of the odd
and even Hermite functions. This is the case for the horizon-
tally and vertically inverted image associated with the lens
law of geometric optics, although here the scale factors
determining the magnification factor have been normalized
out.

More generally, as the power o varies (via the Arccosine
relationship depending on the separation distance), the phase
angle of the n™ coefficient of the Hermite expansion varies
according to the relationship shown above and the scale fac-
tor may vary as well [5]. For images, all of the above occurs
in the same manner but in two dimensions [5].

Through use of the Mehler kernel [16], the above expan-
sion may be represented in closed form as [5]:

Flk(x)] = (10)

e~ mai/2 - X2_‘_},2
\ isin(za/2) j::k(x)e [( 2

Note in [5] that the factor of i multiplying the sin function
under the radical has been erroneously omitted. Clearly, both
the Hermite and integral representations are periodic in o
with period four. Further, it can be seen from either represen-
tation that:

F2 k() |=FF (k) FFF k) ]=F{k(-x)]

]cot(%) - xycsc(ﬂ—;) dx

an
which illustrates an aspect of the invention as the effect €
will be the degree of misfocus introduced by the misfocused
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lens, while the Fourier transform raised to the second power
represents the lens-law optics case. In particular, the group
property makes it possible to calculate the inverse operation
to the effect induced on a record image by a misfocused lens
in terms of explicit mathematical operations that can be real-
ized either computationally, by means of an optical system,
or both. Specifically, because the group has period 4, it fol-
lows that F~>=F7; thus:

F= k@)D =F2FTk®)]=FFTk(x)]=FF k() ]<F*Tk(-x)112)

Thus, one aspect of the invention provides image misfo-
cus correction, where the misfocused image had been cre-
ated by a quality though misfocused lens or lens-system.
This misfocus can be corrected by applying a fractional Fou-
rier transform operation; and more specifically, if the lens is
misfocused by an amount corresponding to the fractional
Fourier transform of power €, the misfocus may be corrected
by applying a fractional Fourier transform operation of
power —e.

It is understood that in some types of situations, spatial
scale factors of the image may need to be adjusted in con-
junction with the fractional Fourier transform power. For
small variations of the fractional Fourier transform power
associated with a slight misfocus, this is unlikely to be nec-
essary. However, should spatial scaling need to be made,
various optical and signal processing methods well known to
those skilled in the art can be incorporated. 1n the case of
pixilated images (images generated by digital cameras, for
example) or lined-images (generated by video-based
systems, for example), numerical signal processing opera-
tions may require standard resampling (interpolation and/or
decimation) as is well known to those familiar with standard
signal processing techniques.

1t is likely that the value of power € is unknown a priori. In
this particular circumstance, the power of the correcting
fractional Fourier transform operation may be varied until
the resulting image is optimally sharpened. This variation
could be done by human interaction, as with conventional
human interaction of lens focus adjustments on a camera or
microscope, for example.

If desired, this variation could be automated using, for
example, some sort of detector in an overall negative feed-
back situation. In particular, it is noted that a function with
sharp edges are obtained only when its contributing,
smoothly-shaped basis functions have very particular phase
adjustments, and perturbations of these phase relationships
rapidly smooth and disperse the sharpness of the edges.
Most natural images contain some non-zero content of sharp
edges, and further it would be quite unlikely that a naturally
occurring, smooth gradient would tighten into a sharp edge
under the action of the fractional Fourier transform because
of the extraordinary basis phase relationships required. This
suggests that a spatial high-pass filter, differentiator, or other
edge detector could be used as part of the sensor makeup. In
particular, an automatically adjusting system may be config-
ured to adjust the fractional Fourier transform power to
maximize the sharp edge content of the resulting correcting
image. 1f desired, such a system may also be configured with
human override capabilities to facilitate pathological image
situations, for example.

F1G. 2 shows an automated approach for adjusting the
fractional Fourier transform parameters of exponential
power and scale factor to maximize the sharp edge content
of the resulting correcting image. 1n this figure, original
image data 201 is presented to an adjustable fractional Fou-
rier transform element 202, which may be realized physi-
cally via optical processes or numerically (using an image
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processing or computation system, for example). The power
and scale factors of the fractional Fourier transform may be
set and adjusted 203 as necessary under the control of a step
direction and size control element 204.

Typically, this element would initially set the power to the
ideal value of zero (making the resulting image data 205
equivalent to the original image data 201) or two (making
the resulting image data 205 equivalent to an inverted image
of original image data 201), and then deviate slightly in
either direction from this initial value. The resulting image
data 205 may be presented to edge detector 206 which iden-
tifies edges, via differentiation or other means, whose sharp-
ness passes a specified fixed or adaptive threshold. The iden-
tified edge information may be passed to an edge percentage
tally element 207, which transforms this information into a
scalar-valued measure of the relative degree of the amount of
edges, using this as a measure of image sharpness.

The scalar measure value for each fractional Fourier trans-
form power may be stored in memory 208, and presented to
step direction and size control element 204. The step direc-
tion and size control element compares this value with the
information stored in memory 208 and adjusts the choice of
the next value of fractional Fourier transform power accord-
ingly. In some implementations, the step direction and size
control element may also control edge detection parameters,
such as the sharpness threshold of edge detector element
207. When the optimal adjustment is determined, image data
205 associated with the optimal fractional Fourier transform
power is designated as the corrected image.

It is understood that the above system amounts to a
negative-feedback control or adaptive control system with a
fixed or adaptive observer. As such, it is understood that
alternate means of realizing this automated adjustment can
be applied by those skilled in the art. 1t is also clear to one
skilled in the art that various means of interactive human
intervention may be introduced into this automatic system to
handle problem cases or as a full replacement for the auto-
mated system.

In general, the corrective fractional Fourier transform
operation can be accomplished by any one or combination of
optical, numerical computer, or digital signal processing
methods as known to those familiar with the art, recognizing
yet other methods may also be possible. Optical methods
may give effectively exact implementations of the fractional
Fourier transforms, or in some instances, approximate
implementations of the transforms.

For a pixilated image, numerical or other signal process-
ing methods may give exact implementations through use of
the discrete version of the fractional Fourier transform [10].

Additional computation methods that are possible include
one or more of:

dropping the leading scalar complex-valued phase term

(which typically has little or no effect on the image);
decomposing the fractional Fourier transform as a pre-
multiplication by a “phase chirp” ¢’*2, taking a conven-
tional Fourier transform with appropriately scaled
variables, and multiplying the result by another “phase

chirp;” and
changing coordinate systems to Wigner form:
(£29 5oy a3
w w

If desired, any of these just-described computation methods
can be used with the approximating methods described
below.

Other embodiments provide approximation methods for
realizing the corrective fractional Fourier transform opera-
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tion. For a non-pixilated image, numerical or other signal
processing methods can give approximations through:

finite-order discrete approximations of the integral repre-
sentation;

finite-term discrete approximations by means of the Her-
mite expansion representation; and

the discrete version of the fractional Fourier transform
[10].

Classical approximation methods [11, 12] may be used in
the latter two cases to accommodate particular engineering,
quality, or cost considerations.

In the case of Hermite expansions, the number of included
terms may be determined by analyzing the Hermite expan-
sion of the image data, should this be tractable. In general,
there will be some value in situations where the Hermite
function expansion of the image looses amplitude as the
order of the Hermite functions increases. Hermite function
orders with zero or near-zero amplitudes may be neglected
entirely from the fractional Fourier computation due to the
eigenfunction role of the Hermite functions in the fractional
Fourier transform operator.

One method for realizing finite-order discrete approxima-
tions of the integral representation would be to employ a
localized perturbation or Taylor series expansion of the inte-
gral representation. In principal, this approach typically
requires some mathematical care in order for the operator to
act as a reflection operator (i.e., inversion of each horizontal
direction and vertical direction as with the lens law) since
the kernel behaves as a generalized function (delta function),
and hence the integral representation of the fractional Fou-
rier transform operator resembles a singular integral.

In a compound lens or other composite optical system, the
reflection operator may be replaced with the identity
operator, which also involves virtually identical delta func-
tions and singular integrals as is known to those familiar in
the art. However, this situation is fairly easy to handle as a
first or second-order Taylor series expansion. The required
first, second, and any higher-order derivatives of the frac-
tional Fourier transform integral operator are readily and
accurately obtained symbolically using available mathemati-
cal software programs, such as Mathematica or MathLab,
with symbolic differential calculus capabilities. In most
cases, the zero-order term in the expansion will be the simple
reflection or identity operator. The resulting expansion may
then be numerically approximated using conventional meth-
ods.

Another method for realizing finite-order discrete
approximations of the integral representation would be to
employ the infinitesimal generator of the fractional Fourier
transform, that is, the derivative of the fractional Fourier
transform with respect to the power of the transform. This is
readily computed by differentiating the Hermite function
expansion of the fractional Fourier transform, and use of the
derivative rule for Hermite functions. Depending on the rep-
resentation used [5, 14, 15], the infinitesimal generator may
be formed as a linear combination of the Hamiltonian opera-
tor H and the identity operator 1; for the form of the integral
representation used earlier, this would be:

in (14)
z(H+ 1)

where and the identity operator 1 simply reproduces the
original function, and

1s)
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The role of the infinitesimal generator, which can be denoted
as A, is to represent an operator group in exponential form, a
particular example is:
Fo=e4 16)
For small values of A, one can then approximate e as
1+(aA), so using the fact [12] from before (repeated here):

F= k@D =F 2Tk ®) =P FTk(x) J=F<F k() ]=FTk(-x)L7)

one can then approximate F€ as

inf 8 (18)
FE=I+(£A)=I+£Z(W—X2+I]

These operations can be readily applied to images using con-
ventional image processing methods. For non-pixilated
images, the original source image can be approximated by
two-dimensional sampling, and the resulting pixilated image
can then be subjected to the discrete version of the fractional
Fourier transform [10].

In cases where the discrete version of the fractional Fou-
rier transform [10] is implemented, the transform may be
approximated. Pairs of standard two-dimensional matrices,
one for each dimension of the image, can be used. As with
the continuous case, various types of analogous series
approximations, such as those above, can be used.

Alternatively, it is noted that because of the commutative
group property of the fractional Fourier transform, the
matrix/tensor representations, or in some realizations even
the integrals cited above may be approximated by precom-
puting one or more fixed step sizes and applying these
respectively, iteratively, or in mixed succession to the image
data.

One exemplary embodiment utilizing a pre-computation
technique may be where the fractional Fourier transform
represents pre-computed, positive and negative values of a
small power, for example 0.01. Negative power deviations of
increasing power can be had by iteratively applying the pre-
computed —0.01 power fractional Fourier transform; for
example, the power -0.05 would be realized by applying the
pre-computed -0.01 power fractional Fourier transform five
times. In some cases of adaptive system realizations, it may
be advantageous to discard some of the resulting image data
from previous power calculations. This may be accom-
plished by backing up to a slightly less negative power by
applying the +0.01 power fractional Fourier transform to a
last stored, resulting image.

As a second example of this pre-computation method,
pre-computed fractional Fourier transform powers obtained
from values of the series 2" and 2~ may be stored or
otherwise made available, for example:

{F:1/1024’1::1/512’1::1/256’1::1/128’1::1/64’ L } (19)
Then, for example, the power 11/1024 can be realized by
operating on the image data with

Fl/1024F1/256F1/128 (20)
where the pre-computed operators used are determined by
the binary-decomposition of the power with respect to the
smallest power value (here, the smallest value is 1/1024 and
the binary decomposition of 11/1024 is 1/1024+1/256+1/
128, following from the fact that 11=8+2+1).

Such an approach allows, for example, N steps of resolution
to be obtained from a maximum of log,N compositions of
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log,N pre-computed values. This approach may be used to
calculate fractional powers of any linear matrix or tensor, not
just the fractional Fourier transform.

It is noted that any of the aforementioned systems and
methods may be adapted for use on portions of an image
rather than the entire image. This permits corrections of
localized optical aberrations. In complicated optical aberra-
tion situations, more than one portion of an image may be
processed in this manner, with differing corrective opera-
tions made for each portion of the image.

1t is further noted that the systems and methods described
herein may also be applied to conventional lens-based opti-
cal image processing systems, to systems with other types of
elements obeying fractional Fourier optical models, as well
as to widely ranging environments such as integrated optics,
optical computing systems, particle beam systems, electron
microscopes, radiation accelerators, and astronomical obser-
vation methods, among others.

Commercial products and services application are wide-
spread. For example, the present invention may be incorpo-
rated into film processing machines, desktop photo editing
software, photo editing web sites, VCRs, camcorders, desk-
top video editing systems, video surveillance systems, video
conferencing systems, as well as in other types of products
and service facilities. Four exemplary consumer-based
applications are now considered.

1. One particular consumer-based application is in the
correction of camera misfocus in chemical or digital photog-
raphy. Here the invention may be used to process the image
optically or digitally, or some combination thereof, to cor-
rect the misfocus effect and create an improved image which
is then used to produce a new chemical photograph or digital
image data file. 1n this application area, the invention can be
incorporated into film processing machines, desktop photo
editing software, photo editing web sites, and the like.

2. Another possible consumer-based application is the
correction of video camcorder misfocus. Camcorder misfo-
cus typically results from user error, design defects such as a
poorly designed zoom lens, or because an autofocus func-
tion is autoranging on the wrong part of the scene being
recorded. Non-varying misfocus can be corrected for each
image with the same correction parameters. In the case of
zoom lens misfocus, each frame or portion of the video may
require differing correction parameters. In this application
area, the invention can be incorporated into VCRs,
camcorders, video editing systems, video processing
machines, desktop video editing software, and video editing
web sites, among others.

3. Another commercial application involves the correction
of' image misfocus experienced in remote video cameras uti-
lizing digital signal processing. Particular examples include
video conference cameras or security cameras. 1n these
scenarios, the video camera focus cannot be adequately or
accessibly adjusted, and the video signal may in fact be com-
pressed.

4. Video compression may involve motion compensation
operations that were performed on the unfocused video
image. Typical applications utilizing video compression
include, for example, video conferencing, video mail, and
web-based video-on-demand, to name a few. 1n these par-
ticular types of applications, the invention may be employed
at the video receiver, or at some pre-processing stage prior to
delivering the signal to the video receiver. 1f the video com-
pression introduces a limited number of artifacts, misfocus
correction is accomplished as presented herein. However, if
the video compression introduces a higher number of
artifacts, the signal processing involved with the invention
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may greatly benefit from working closely with the video
decompression signal processing. One particular implemen-
tation is where misfocus corrections are first applied to a full
video frame image. Then, for some interval of time, misfo-
cus correction is only applied to the changing regions of the
video image. A specific example may be where large por-
tions of a misfocused background can be corrected once, and
then reused in those same regions in subsequent video
frames.

5. The misfocus correction techniques described herein
are directly applicable to electron microscopy systems and
applications. For example, electron microscope optics
employ the wave properties of electrons to create a coherent
optics environment that obeys the Fourier optics structures
as coherent light (see, for example, John C. H. Spence,
High-Resolution Electron Microscopy, third edition, 2003,
Chapters 24, pp. 15-88). Electron beams found in electron
microscopes have the same geometric, optical physics char-
acteristics generally found in coherent light, and the same
mathematical quadratic phase structure as indicated in Levi
[1] Section 19.2 for coherent light, which is the basis of the
fractional Fourier transform in optical systems (see, for
example, John C. H. Spence High-Resolution Electron
Microscopy, third edition, 2003, Chapter 3, formula 3.9, pg.
55).

Misfocused Optical Path Phase Reconstruction

Most photographic and electronic image capture, storage,
and production technologies are only designed to operate
with image amplitude information, regardless as to whether
the phase of the light is phase coherent (as is the case with
lasers) or phase noncoherent (as generally found in most
light sources). In sharply focused images involving nonco-
herent light formed by classical geometric optics, this lack of
phase information is essentially of no consequence in many
applications.

In representing the spatial distribution of light, the phase
coefficient of the basis functions can be important; as an
example, F1G. 3.6, p. 62 of Digital lmage Processing—
Concepts, Algorithms, and Scientific Applications, by Bernd
Jahne, Springer-Verlag, New York, 1991 [20] shows the
effect of loss and modification of basis function phase infor-
mation and the resulting distortion in the image. Note in this
case the phase information of the light in the original or
reproduced image differs from the phase information
applied to basis functions used for representing the image.

In using fractional powers of the Fourier transform to rep-
resent optical operations, the fractional Fourier transform
reorganizes the spatial distribution of an image and the phase
information as well. Here the basis functions serve to repre-
sent the spatial distribution of light in a physical system and
the phase of the complex coefficients multiplying each of the
basis functions mathematically result from the fractional
Fourier transform operation. 1n the calculation that leads to
the fractional Fourier transform representation of a lens,
complex-valued coefficients arise from the explicit account-
ing for phase shifts of light that occurs as it travels through
the optical lens (see Goodman [2], pages 77-96, and Levi
[1], pages 779-784).

Thus, when correcting misfocused images using frac-
tional powers of the Fourier transform, the need may arise
for the reconstruction of relative phase information that was
lost by photographic and electronic image capture, storage,
and production technologies that only capture and process
image amplitude information.

In general, reconstruction of lost phase information has
not previously been accomplished with much success, but
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some embodiments of the invention leverage specific proper-
ties of both the fractional Fourier transform and an ideal
correction condition. More specifically, what is provided—
for each given value of the focus correction parameter—is
the calculation of an associated reconstruction of the relative
phase information. Typically, the associated reconstruction
will be inaccurate unless the given value of the focus correc-
tion parameter is one that will indeed correct the focus of the
original misfocused image.

This particular aspect of the invention provides for the
calculation of an associated reconstruction of relative phase
information by using the algebraic group property of the
fractional Fourier transform to back calculate the lost rela-
tive phase conditions that would have existed, if that given
specific focus correction setting resulted in a correctly
focused image. For convergence of human or machine itera-
tions towards an optimal or near optimal focus correction,
the system may also leverage the continuity of variation of
the phase reconstruction as the focus correction parameter is
varied in the iterations.

To facilitate an understanding of the phase reconstruction
aspect of the invention, it is helpful to briefly summarize the
some of the image misfocus correction aspects of the inven-
tion. This summary will be made with reference to the vari-
ous optical set-ups depicted in F1GS. 4-8, and is intended to
provide observational details and examples of where and
how the relative phase reconstruction may be calculated
(F1G. 9) and applied (F1G. 10).

Misfocus Correction

F1G. 4 shows a general optical environment involving
sources of radiating light 400, a resulting original light orga-
nization (propagation direction, amplitude, and phase) 401
and its constituent photons. Optical element 402 is shown
performing an image-forming optical operation, causing a
modified light organization (propagation direction,
amplitude, and phase) 403 and its constituent photons, ulti-
mately resulting in observed image 404. This figure shows
that for each light organization 401, 403 of light and
photons, the propagation direction, amplitude, and phase
may be determined by a variety of different factors. For
example, for a given propagation media, propagation
direction, amplitude, and phase may be determined by such
things as the separation distance between point light source
400 and optical element 402, the pixel location in a trans-
verse plane parallel to the direction of propagation, and light
frequency/wavelength, among others.

F1G. 5 is an optical environment similar to that depicted in
F1G. 4, but the FIG. 5 environment includes only a single
point light source 500. In this Figure, single point light
source 500 includes exemplary propagation rays 501a, 501b,
501c that are presented to optical element 502. The optical
element is shown imposing an optical operation on these
rays, causing them to change direction 503a, 503b, 503c.
Each of the rays 503a, 503b, 503c are shown spatially recon-
verging at a single point in the plane of image formation 504,
which is a focused image plane.

F1G. 5 also shows directionally modified rays 503a, 503b,
503c spatially diverging at short unfocused image plane 505
and long unfocused image plane 506, which are each trans-
verse to the direction of propagation that is associated with
images which are not in sharp focus, which will be referred
to as nonfocused image planes. Further description of the
optical environment shown in FI1G. 5 will be presented to
expand on phase correction, and such description will be
later discussed with regard to FIGS. 9-10.
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Reference is now made to F1GS. 68, which disclose tech-
niques for mathematical focus correction and provides a
basis for understanding the phase correction aspect of the
present invention. For clarity, the term “lens” will be used to
refer to optical element 502, but the discussion applies
equally to other types of optical elements such as a system of
lenses, graded-index material, and the like.

FIG. 6 provides an example of image information flow in
accordance with some embodiments of the present inven-
tion. As depicted in block 600, an original misfocused image
is adapted or converted as may be necessary into a digital file
representation of light amplitude values 601. Examples of
original misfocused images include natural or photographic
images. Digital file 601 may include compressed or uncom-
pressed image formats.

For a monochrome image, the light amplitude values are
typically represented as scalar quantities, while color images
typically involve vector quantities such as RBG values, YUV
values, and the like. In some instances, the digital file may
have been subjected to file processes such as compression,
decompression, color model transformations, or other data
modification processes to be rendered in the form of an array
of light amplitude values 602. Monochrome images typi-
cally only include a single array of scalar values 602a. In
contrast, color images may require one, two, or more addi-
tional arrays, such as arrays 602b and 602c. A CMYB color
model is a particular example of a multiple array, color
image.

The array, or in some instances, arrays of light amplitude
values 602 may then be operated on by a fractional power of
the Fourier transform operation 603. This operation math-
ematically compensates for lens misfocus causing the focus
problems in the original misfocused image 600. A result of
this operation produces corrected array 604, and in case of a
color model, exemplary subarrays 604a, 604b, 604c result
from the separate application of the fractional power of the
Fourier transform operation 603 to exemplary subarrays
602a, 602b, 602c. If desired, each of the corrected subarrays
604a, 604b, 604c may be converted into a digital file repre-
sentation of the corrected image 605; this digital file could
be the same format, similar format, or an entirely different
format from that of uncorrected, original digital file repre-
sentation 601.

FIG. 7 shows an optical environment having nonfocused
planes. This figure shows that the power of the fractional
Fourier transform operator increases as the separation dis-
tance between optical lens operation 502 and image planes
504, 505 increases, up to a distance matching that of the lens
law. In accordance with some aspects of the invention, and
as explained in Ludwig [5], Goodman [2], pages 77-96, and
Levi [1], pages 779-784, an exactly focused image corre-
sponds to a fractional Fourier transform power of exactly
two. Furthermore, as previously described, misfocused
image plane 505 lies short of the focused image plane 504,
and corresponds to a fractional Fourier transform operation
with a power slightly less than two. The deviation in the
power of the fractional Fourier transform operation corre-
sponding to short misfocus image plane 505 will be denoted
(-€5), where the subscript “S” denotes “short.” Since an
exactly focused image at focused image plane 504 corre-
sponds to a fractional Fourier transform power of exactly
two, this short misfocus may be corrected by application of
the fractional Fourier transform raised to the power (+€), as
indicated in block 701.

By mathematical extension, as described in [5], a long
misfocused image plane 506 that lies at a distance further
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away from optical element 502 than does the focused image
plane 504 would correspond to a fractional Fourier trans-
form operation with a power slightly greater than two. The
deviation in the power of the fractional Fourier transform
operation corresponding to long misfocus image plane 506
will be denoted (+€;), where the subscript “L”” denotes
“long.” This long misfocus may be corrected by application
of the fractional Fourier transform raised to the power (-¢;),
as indicated in block 702.

Relative Phase Information in the Misfocused
Optical Path

In terms of geometric optics, misfocus present in short
misfocused image plane 505 and long misfocused image
plane 506 generally correspond to non-convergence of rays
traced from point light source 500, through optical element
502, resulting in misfocused images planes 505 and 506. For
example, F1GS. 5 and 7 show exemplary rays 501a, 501b,
501c diverging from point light source 500, passing through
optical element 502, and emerging as redirected rays 503a,
503b, 503c. The redirected rays are shown converging at a
common point in focused image plane 504. However, it is
important to note that these redirected rays converge at dis-
creetly different points on misfocused image planes 505 and
506.

F1G. 8 is a more detailed view of image planes 504, 505
and 506. In this figure, rays 503a, 503b, 503c are shown
relative to focused image plane 504, and misfocused image
planes 505 and 506. This figure further shows the path length
differences that lead to phase shifts of the focused and unfo-
cused planes result from varying angles of incidence,
denoted by 0, and 6,. The distances of rays 503a, 503b, 503c
from optical element 502 are given by the following table:

TABLE 1

Distance to
incidence with
long misfocused

Distance to
incidence with
short misfocused

Distance to
incidence with

Ray plane 505 focus plane 504 plane 506
503a 5,5 &,F &,F
503b 8> &% &-
503¢ 8,5 &,F &t

Simple geometry yields the following inequality relation-
ships:

865 <007 <o (2D
8,5<8,F<d," (22)
8,5<8,F <, (23)

For a given wavelength A, the phase shift ¢ created by a
distance-of-travel variation 9 is given by the following:

p=278/A @4

so the variation in separation distance between the focus
image plane 504 and the misfocus image planes 505, 506 is
seen to introduce phase shifts along each ray.

Further, for 7/2>0,>0,>0, as is the case shown in F1G. 8,
simple trigonometry gives:

8;F=8,F sin 0, (25)
865=d," sin 0, (26)
1>sin 0 >sin 6,>0 27)
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which in turn yields the inequality relationships:
8,5<6,5<8 5 (28)
865 <d,F<d,F (29)
&k <dl<d,t (30)

Again, for a given wavelength A, the phase shift ¢ created by
a distance-of-travel variation 8 is given by the following:

Y=2d/h GB1)

so the variation in separation distance between focused
image plane 504 and the misfocused image planes 505, 506
is seen to introduce non-uniform phase shifts along each ray.
Thus the misfocus of the original optical path involved in
creating the original image (for example, 600 in F1G. 6)
introduces a non-uniform phase shift across the rays of vari-
ous incident angles, and this phase shift varies with the dis-
tance of separation between the positions of misfocused
image planes 505, 506, and the focused image plane 504.

Referring again to FIGS. 6 and 7, an example of how a
misfocused image 600 may be corrected will now be
described. A misfocused image requiring correction will
originate either from short misfocused plane 505 or long
misfocused plane 506. 1n situations where misfocused image
600 originates from short misfocused plane 505, misfocus
correction may be obtained by applying a fractional Fourier
transform operation raised to the power (+€,), as indicated in
block 701. On the other hand, in situations where misfo-
cused image 600 originates from long misfocused plane 506,
misfocus correction may be obtained by applying a frac-
tional Fourier transform operation raised to the power (-¢; ),
as indicated in block 702.

In general, the fractional Fourier transform operation cre-
ates results that are complex-valued. 1n the case of the dis-
crete fractional Fourier transform operation, as used herein,
this operation may be implemented as, or is equivalent to, a
generalized, complex-valued array multiplication on the
array image of light amplitudes (e.g., ¢). In the signal
domain, complex-valued multiplication of a light amplitude
array element, v;, by a complex-valued operator element ¢,
results in an amplitude scaling corresponding to the polar or
phasor amplitude of ¢, and a phase shift corresponding to the
polar or phasor phase of ¢.

FIG. 9 shows a series of formulas that may be used in
accordance with the present invention. As indicated in block
901, the fractional Fourier transform operation array (FrFT)
is symbolically represented as the product of an amplitude
information array component and a phase information array
component. The remaining portions of F1G. 9 illustrate one
technique for computing phase correction in conjunction
with the correction of image misfocus.

For example, block 902 shows one approach for correct-
ing image misfocus, but this particular technique does not
provide for phase correction. Image correction may proceed
by first noting that the misfocused optics corresponds to a
fractional Fourier transform of power 2-e for some
unknown value of €; here € may be positive (short-misfocus)
or negative (long-misfocus). Next, the fractional Fourier
transform may be mathematically applied with various, sys-
tematically selected trial powers until a suitable trial power
is found. A particular example may be where the trial power
is effectively equal to the unknown value of €. The resulting
mathematically corrected image appears in focus and a cor-
rected image is thus produced.

Referring still to F1G. 9, block 903 depicts the misfocus
correction technique of block 901, as applied to the approach
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shown in block 902. This particular technique accounts for
the amplitude and phase components of the optical and
mathematical fractional Fourier transform operations. In
particular, there is an amplitude and phase for the misfo-
cused optics, which led to the original misfocused image
600.

As previously noted, conventional photographic and elec-
tronic image capture, storage, and production technologies
typically only process or use image amplitude information,
and were phase information is not required or desired. In
these types of systems, the relative phase information cre-
ated within the original misfocused optical path is lost since
amplitude information is the only image information that is
conveyed. This particular scenario is depicted in block 904,
which shows original misfocused image 600 undergoing
misfocus correction, even thought its relative phase informa-
tion is not available. In all applicable cases relevant to the
present invention (for example, 0<e<2), the phase informa-
tion is not uniformly zero phase, and thus the missing phase
information gives an inaccurate result (that is, not equal to
the focused case of the Fourier transform raised to the power
2) for what should have been the effective correction.

Relative Phase Restoration

In accordance with some embodiments, missing phase
information may be reintroduced by absorbing it within the
math correction stage, as shown block 905. This absorbing
technique results in a phase-restored math correction of the
form:

D(F?1FY (32)
where the following symbolic notation is used:
O(X)=phase(X) (33)

In the case where y is close enough to be effectively equal
to €, the phase correction will effectively be equal to the
value necessary to restore the lost relative phase information.
Note that this expression depends only on v, and thus phase
correction may be obtained by systematically iterating y
towards the unknown value of €, which is associated with the
misfocused image. Thus the iteration, computation, manual
adjustment, and automatic optimization systems, methods,
and strategies of non-phase applications of image misfocus
correction may be applied in essentially the same fashion as
the phase correcting applications of image misfocus correc-
tion by simply substituting F' with ®(F>~")F" in iterations or
manual adjustments.

F1G. 10 provides an example of image information flow in
accordance with some embodiments of the invention. This
embodiment is similar to FIG. 6 is many respects, but the
technique shown in FIG. 10 further includes phase restora-
tion component 1001 coupled with focus correction compo-
nent 603. 1n operation, image array 602 is passed to phase
restoration component 1001, which pre-operates on image
array 602. After the pre-operation calculation has been
performed, fractional Fourier transform operation 603 is
applied to the image array.

Numerical Calculation of Relative Phase Restoration

Next, the calculation of the phase-restored mathematical
correction is considered. Leveraging two-group antislavery
properties of the fractional Fourier transform operation, the
additional computation can be made relatively small.

In the original eigenfunction/eigenvector series defini-
tions for both the continuous and discrete forms of the frac-
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tional Fourier transform of power a, the nth eigenfunction/
eigenvectors are multiplied by:

e—irm:cx/2 (34)
Using this equation and replacing o with (2-y) gives:

E—imr(Z—y)/Z —inm Eimr(—y)/Z (35)

=e

— (_ 1)7: Eimr(—y)/Z

for both the continuous and discrete forms of the fractional

Fourier transform. Note that the following equation:
gD 33)

can be rewritten as:
effmr(fv)=efmw=(effnnv)‘

G7

where (X)* denotes the complex conjugate of X.
Also, because the nth Hermite function h,(y) is odd in y
for odd n, and even in y for even n, such that:

b, (=y)=(=1)"h,(~y) (38)
so that in the series definition the nth term behaves as:
hn (ha (e = hy ()b () (= e 39

By (Db (—y)e

hy (x)hy (- y)(e ™"

For both the continuous and discrete forms of the fractional
Fourier transform, replacing h,, (y) with h, (-y) is equivalent
to reversing, or taking the mirror image, of h,(y). In
particular, for the discrete form of the fractional Fourier
transform, this amounts to reversing the order of terms in the
eigenvectors coming out of the similarity transformation,
and because of the even-symmetry/odd-antisymmetry of the
Hermite functions and the fractional Fourier transform dis-
crete eigenvectors, this need only be done for the odd num-
ber eigenvectors.

Further, since the Hermite functions and discrete Fourier
transform eigenvectors are real-valued, the complex conju-
gate can be taken on the entire term, not just the exponential,
as shown by:

b, (O, (-y) (e (x)h, (-y)e ¢ (40)

Since complex conjugation commutes with addition, all

these series terms can be calculated and summed completely

before complex conjugation, and then one complex conjuga-
tion can be applied to the sum, resulting in the same out-
come.

The relative phase-restored mathematical correction can
thus be calculated directly, for example, by the following
exemplary algorithm or its mathematical or logistic equiva-
lents:

1. For a given value of y, compute F¥ using the Fourier trans-
form eigenvectors in an ordered similarity transformation
matrix;

2. For the odd-indexed eigenvectors, either reverse the order
or the sign of its terms to get a modified similarity trans-
formation;

3. Compute the complete resulting matrix calculations as
would be done to obtain a fractional Fourier transform,
but using this modified similarity transformation;
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4. Calculate the complex conjugate of the result of operation

(3) to get the phase restoration, (P(FY))*; and
5. Calculate the array product of the operation (1) and opera-

tion (4) to form the phase-restored focus correction

(D(F))*F".

As an example of a mathematical or logistic equivalent to
the just described series of operations, note the commonality
of'the calculations in operations (1) and (3), differing only in
how the odd-indexed eigenvectors are handled in the
calculation, and in one version, only by a sign change. An
example of a mathematical or logistic equivalent to the
above exemplary technique would be:

1. For a given value of'y, partially compute F" using only the
even-indexed Fourier transform eigenvectors;

2. Next, partially compute the remainder of F¥ using only the
odd-indexed Fourier transform eigenvectors;

3. Add the results of operation (1) and (2) to get FY

4. Subtract the result of operation (2) from the result of
operation (1) to obtain a portion of the phase restoration;

5. Calculate the complex conjugate of the result of operation

(4) to obtain the phase restoration (®(FY))*; and
6. Calculate the array product of operations (1) and (4) to

form (P(FY))*F".

In many situations, partially computing two parts of one
similarity transformation, as described in the second exem-
plary algorithm, could be far more efficient than performing
two full similarity transformation calculations, as described
in the first exemplary algorithm. One skilled in the art will
recognize many possible variations with differing
advantages, and that these advantages may also vary with
differing computational architectures and processor lan-
guages.

Embedding Phase Restoration within lmage
Misfocus Correction

Where relative phase-restoration is required or desired in
mathematical focus correction using the fractional Fourier
transform, phase restoration element 1001 may be used in
combination with focus correction element 603, as depicted
in F1G. 10.

It is to be realized that in image misfocus correction appli-
cations which do not account for phase restoration, pre-
computed values of F' may be stored, fetched, and multi-
plied as needed or desired. Similarly, in image misfocus
correction applications which provide for phase restoration,
pre-computed values of ®(FY))*F' may also be stored,
fetched, and multiplied as needed or desired. For example,
pre-computed values of phase reconstructions may be stored
corresponding to powers of the fractional Fourier transform,
such that the powers are related by roots of the number 2, or
realized in correspondence to binary representations of
fractions, or both. In these compositions, care may need to
be taken since the array multiplications may not freely com-
mute due to the nonlinear phase extraction steps.

Each of the various techniques for computing the phase-
restored focus correction may include differing methods for
implementing pre-computed phase-restorations. For
example, in comparing the first and second exemplary
algorithms, predominated values may be made and stored
for any of:

First example algorithm operation (5) or its equivalent sec-

ond example algorithm operation (6);

First example algorithm operation (4) or its equivalent sec-
ond example algorithm operation (5); and

Second example algorithm operations (1) and (2) with addi-
tional completing computations provided as needed.

Again, it is noted that these phase restoration techniques
can apply to any situation involving fractional Fourier trans-
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form optics, including electron microscopy processes and
the global or localized correction of misfocus from electron
microscopy images lacking phase information. Localized
phase-restored misfocus correction using the techniques dis-
closed herein may be particularly useful in three-
dimensional, electron microscopy and tomography where a
wide field is involved in at least one dimension of imaging.

It is also noted that the various techniques disclosed
herein may be adapted for use on portions of an image rather
than the entire image. This permits corrections of localized
optical aberrations. In complicated optical aberration
situations, more than one portion may be processed in this
manner, in general with differing corrective operations made
for each portion of the image.

Iterative Fractional Fourier Transform Computation
Environments Leveraging the Structure of the
Similarity Transformation

It is also possible to structure computations of the frac-
tional Fourier transform operating on a sample image array
or sampled function vector so that portions of the computa-
tion may be reused in subsequent computations. This is dem-
onstrated in the case of a similarity transformation represen-
tation of the fractional Fourier transform in F1G. 11. The
general approach applies to vectors, matrices, and tensors of
various dimensions, other types of multiplicative decompo-
sitional representations of the fractional Fourier transform,
and other types of operators. In particular the approach illus-
trated in F1G. 11 may be directly applied to any diagonaliz-
able linear matrix or tensor, not just the fractional Fourier
transform.

FIG. 11 illustrates the action of a diagonalizable matrix,
tensor, or linear operator on an underlying vector, matrix,
tensor, or function 1101 to produce a resulting vector,
matrix, tensor, or function 1105. In this approach, the chosen
diagonalizable matrix, tensor, or linear operator 1100 is
decomposed in the standard way into a diagonalized repre-
sentation involving the ordered eigenvectors,
eigenfunctions, etc. arranged to form a similarity transfor-
mation 1102, a diagonal matrix, tensor, or linear operator of
eigenvalues 1103 with eigenvalues arranged in an ordering
corresponding to the ordering of the similarity transforma-
tion 1102, and the inverse similarity transformation 1104
(equivalent to the inverse of similarity transformation 1102,
i.e., the product of the inverse similarity transformation 1104
and similarity transformation 1102 is the identity). As
described earlier, arbitrary powers of the chosen diagonaliz-
able matrix, tensor, or linear operator 1100 may be obtained
by taking powers of the diagonal matrix, tensor, or linear
operator of eigenvalues 1103, which amounts to simply rais-
ing each eigenvalue to the desired power.

In particular, to obtain the o power of the chosen diago-
nalizable matrix, tensor, or linear operator 1100, one simply
raises each eigenvalue in the diagonal matrix, tensor, or lin-
ear operator of eigenvalues 1103 to the o power. This is
noted as A® in FIGS. 4 and 5. Although the discussion thus
far is for a very general case, the underlying vector, matrix,
tensor, or function 1101 for the focus correction task will be
the unfocused image pixel array U, the resulting vector,
matrix, tensor, or function 1102 will be the trial “corrected”
image pixel array C 1105, the similarity transformation 1102
will be an ordered collection of eigenvectors of the discrete
Fourier transform of two dimensions (a 4-tensor, but simply
the outer product of two 2-dimensional matrices, each diago-
nalized in the standard fashion), and the diagonal matrix,
tensor, or linear operator of eigenvalues 1103 raised to the
power o. amounts to the outer product of two 2-dimensional
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matrices, each with eigenvalues of the discrete Fourier trans-
form arranged in corresponding order to that of P, the simi-
larity transformation 1102.

It is possible to reuse parts of calculations made utilizing
this structure in various application settings. In a first exem-
plary application setting, the image is constant throughout
but the power a takes on various values, as in an iteration
over values of a in an optimization loop or in response to a
user-adjusted focus control. 1n this first exemplary applica-
tion setting, the product 1106 of the similarity transforma-
tion P 1102 and the unfocused image data U 1101 can be
executed once to form a precomputable and reusable result.
Then any number of a-specific values of the product of the
inverse similarity transformation P~' 1104 and the diagonal
power A® 1103 can be computed separately to form various
values of the a-specific portion 1107, and each may be mul-
tiplied with the precalculated reusable result 1106. Further,
since diagonal power A* 1103 is indeed diagonal, multipli-
cation of it by inverse similarity transformation P~* 1104
amounts to a “column” multiplication of a given column of
inverse similarity transformation P~* 1104 by the eigenvalue
in the corresponding “column” of the diagonal power A“
1103. This considerably simplifies the required computa-
tions in a computational environment iterating over values of
a.

F1G. 12 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through
a physical medium, in accordance with embodiments of the
invention. This approximation may be achieved by calculat-
ing a fractional power of a numerical operator, which is
defined by the physical medium and includes a diagonaliz-
able numerical linear operator raised to a power (o). In block
1240, a plurality of images are represented using an indi-
vidual data array for each of the plurality of images. Block
1245 indicates that the numerical operator is represented
with a linear operator formed by multiplying an ordered
similarity transformation operator (P) by a correspondingly-
ordered diagonal operator (A). The result of this is multi-
plied by an approximate inverse (P~") of the ordered similar-
ity transformation operator (P).

Next, in block 1250, the diagonal elements of the
correspondingly-ordered diagonal operator (A) are raised to
the power (o) to produce a fractional power diagonal opera-
tor. Block 1255 includes multiplying the fractional power
diagonal operator by an approximate inverse of the ordered
similarity transformation operator (P™') to produce a first
partial result. Block 1260 includes multiplying a data array
of one of the plurality of images by the ordered similarity
transformation operator (P) to produce a modified data array.
Then, block 1265 includes multiplying the modified data
array by the first partial result to produce the fractional
power of the numerical operator. If desired, the operations
depicted in block 1260 and 1265 may be repeated for each of
the plurality of images.

A second exemplary application is one in which parts of
previous calculations made using the structure of F1G. 11 are
reused. In this embodiment, the power a. is constant through-
out but the image U 1101 is changed. This embodiment
would pertain to a fixed correction that may be repeatedly
applied to a number of image files, for example. This
embodiment may be used to correct a systemic misfocus
episode involving a number of image files U 1101, or imple-
mented in situations in which a particular value of the power
a is to be applied to a plurality of regions of a larger image.
In this situation, the a-specific portion 1107 of the calcula-
tion can be executed once to form a precomputable and reus-
able result. Then any number of image specific calculations
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1106 may be made and multiplied with this a-specific pre-
computable and reusable result 1107. Again, since diagonal
power A® 1103 is indeed diagonal, multiplication of it by
inverse similarity transformation P~' 1104 amounts to a
“column” multiplication of a given column of inverse simi-
larity transformation P~ 1104 by the eigenvalue in the cor-
responding “column” of the diagonal power A* 1103, con-
siderably simplifying the required computations in a
computational environment iterating over a plurality of
image files, for example.

FIG. 13 is a flowchart showing exemplary operations for
approximating the evolution of images propagating through
a physical medium, in accordance with alternative embodi-
ments of the invention. This approximation may be achieved
by calculating a fractional power of a numerical operator,
which is defined by the physical medium and includes a
diagonalizable numerical linear operator raised to a power
(o) having any one of a plurality of values.

In block 1300, an image may be represented using a data
array. Block 1305 indicates that the numerical operator is
represented with a linear operator formed by multiplying an
ordered similarity transformation operator (P) by a
correspondingly-ordered diagonal operator (A). The result
of this is multiplied by an approximate inverse (P~") of the
ordered similarity transformation operator (P).

Next, in block 1310, the diagonal elements of the
correspondingly-ordered diagonal operator (A) are raised to
one of the plurality of values of the power (o) to produce a
fractional power diagonal operator. Block 1315 includes
multiplying the fractional power diagonal operator by an
approximate inverse of the ordered similarity transformation
operator (P™!) to produce a first partial result. Block 1320
includes multiplying the data array of the image by the
ordered similarity transformation operator (P) to produce a
modified data array. Then, block 1325 includes multiplying
the modified data array by the first partial result to produce
the fractional power of the numerical operator. 1f desired, the
operations depicted in blocks 1310 and 1315 may be
repeated for each of the plurality of values of the power (o).

FIG. 14 comparatively summarizes the general calcula-
tions of each of the two described exemplary embodiments
in terms of the structure and elements of F1G. 11. Image-
specific calculations involving matrix or tensor multiplica-
tions can be carried out in an isolated step 1114, as can
a-specific calculations in a separate isolated step 1110.
Since diagonal power A® 1103 is diagonal, multiplication of
it by inverse similarity transformation P~! 1104 amounts to a
“column” multiplication of a given column of inverse simi-
larity transformation P~ 1104 by the eigenvalue in the cor-
responding “column” of the diagonal power A* 1103, con-
siderably simplifying the required computations for the
a-specific calculation step 1110. Depending on the situation,
either step 1114, 1110 may be made once and reused in
calculations 1112 involving the matrix or tensor multiplica-
tion of the result of shared pre-computed results (i.e., one of
1114, 1110) and iteration-specific results (i.e., the other of
1114, 1110).

Matching the Centerings of the Numerical Transform
and the Modeled Lens Action

The discrete fractional Fourier transform is often
described as being based on the conventional definition of
the classical discrete Fourier transform matrix. Because the
classical discrete Fourier transform matrix has elements with
harmonically-related periodic behavior, there is a shift
invariance as to how the transform is positioned with respect
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to the frequency-indexed sample space and the time-indexed
sample space. The classical discrete Fourier transform
matrix typically starts with its first-row, first-column element
as a constant, i.e., zero frequency (or in some applications,
the lowest-frequency sample point), largely as a matter of
convenience since the family of periodic behaviors of the
elements and time/frequency sample spaces (i.e., periodic in
time via application assumption, period in frequency via
aliasing phenomena) are shift invariant.

The periodicity structure of underlying discrete Fourier
transform basis functions (complex exponentials, or
equivalently, sine and cosine functions) facilitate this elegant
shift invariance in the matter of arbitrary positioning of the
indices defining the classical discrete Fourier transform
matrix. Thus the discrete classical Fourier transform is
defined with its native-zero and frequency-zero at the far
edge of the native-index range and frequency-index range.
An example of this is the matrix depicted in F1G. 15. In this
figure, the left-most column and top-most row, both having
all entries with a value of 1, denote the native-zero and
frequency-zero assignments to the far edge of the native-
index range and frequency-index range (noting e”(®=
OB _eO1),

However, the continuous fractional Fourier transform
operates using an entirely different basis function alignment.
The continuous fractional Fourier transform is defined with
its native-zero and frequency-zero at the center of the native-
variable range and frequency-variable range. This is inher-
ited from the corresponding native-zero and frequency-zero
centering of the continuous classical Fourier transform in the
fractionalization process. This situation differs profoundly
from the discrete classical Fourier transform and a discrete
fractional Fourier transform defined from it (which, as
described above, is defined with its native-zero and
frequency-zero at the far edge of the native-index range and
frequency-index range).

In particular, with respect to performing image propaga-
tion modeling with a fractionalization of a classical discrete
Fourier transform, it is further noted that the native-zero and
frequency-zero centering that corresponds to the continuous
fractional Fourier transform naturally matches the modeling
of the optics of lenses or other quadratic phase medium. In
these optical systems, the phase of the light or particle beam
varies as a function of the distance from the center of the
lens. This aspect is illustrated in FIGS. 16 A through 16C.

Turning now to FIGS. 16A through 16C, light or high-
energy particles are shown radiating spherically from a point
in source plane 1600, travelling through space or other
medium to a thin lens 1601 where their direction is changed
and redirected to a point in an image plane positioned
according to the lens law for a focused image. Because
image plane 1602 is thus positioned, all light or high-energy
particle paths from the same source point that are captured
by lens 1601 are bent in such a way that they all converge at
the same point in the positioned image plane 1602. With
respect to center line 1603, which is common to the center of
the lens 1601, the point of convergence is located antipod-
ally (modulo magnification factor), with respect the center
line, from the location of the emitting point in source plane
1600.

F1G. 16A is a side view of source point 1610, which radi-
ates in exemplary diverging paths 1611a, 1612a which are
then bent by lens 1601 into converging paths 1611b and
1612b. Converging paths 1611b and 1612b are shown recon-
verging at point 1615 in image plane 1602. Modulo any
magnification factor induced by the lens law action, conver-
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gence point 1615 is at a location opposite (antipodal), with
respect to center line 1603, to the position of source point
1610.

FIG. 16b is a side view of second source point 1620,
which is located at a greater distance from center line 1603
as compared to source point 1610 of F1G. 16A. Second
source point 1620 is shown radiating in exemplary diverging
paths 1621a and 1622a, which are then bent by lens 1601
into converging paths 1621b and 1622b. Converging paths
1621b and 1622b are shown reconverging at point 1625 in
image plane 1602. Notably, point 1625 is located at a greater
distance from center line 1603, as compared to source point
1610 of F1G. 16 A. Modulo any magnification factor induced
by the lens law action, convergence point 1625 is at a loca-
tion opposite (antipodal), with respect to center line 1603, to
the position of source point 1620.

Similarly, F1G. 16C is a side view of third source point
1630, which is located at a still further distance from center
line 1603. Third source point 1630 is shown radiating along
exemplary diverging paths 1631a and 1632a when are bent
by lens 1601 into converging paths 1631b and 1632b Con-
verging paths 1631a and 1632b are shown reconverging at
point 1635 in image plane 1602. Note that point 1635 is
located at a still greater distance from center line 1603.
Modulo any magnification factor induced by the lens law
action, the convergence point 1635 is at a location opposite
(antipodal), with respect to center line 1603, to the position
of the source point 1630.

FIG. 16D is a top view of image 1650, which is shown
having a variety of contours 1651, 1652, 1653, and 1654 of
constant radial displacement with respect to the image cen-
ter. 1t is to be understood that any point on any of the identi-
fied contours, which is located in a source plane, such as
source plane 1600, will give rise to a point that can only lie
within a corresponding contour (modulo magnification) in
an image plane, such as image plane 1602. Thus, the path
length of a given path from a point on one contour in source
plane 1600, through lens 1601, to its reconvergence point in
the image plane 1602, is rotationally invariant with respect
to lens center line 1603, but is not translationally invariant.
Thus induced phase shift of each path will be affected by
offsets or shifts in location between the image center line
1603 and the source and image centers.

The fractional Fourier transform model, at least in the
case of coherent light or high-energy particle beams, can be
thought of as performing the phase accounting as the image
evolves through the propagation path. Thus, the classical
continuous Fourier transform and its fractionalization match
the modeled optics in sharing the notion of a shared zero
origin for all images and lenses, while the classical discrete
Fourier transform and its fractionalization do not because of
the above-described offset in zero origin to the far edge of
the transform index range. It is understood that in the forego-
ing discussion with respect to lenses applies equally to
almost any type of quadratic-index media, such as GRIN
fiber.

The basis functions used in defining the continuous frac-
tional Fourier transform are the Hermite functions, which
are not periodic despite their wiggling behavior—the n”
Hermite function has only n zeros (i.e., n axis crossings) and
no more. Further, the polynomial amplitude fluctuations of
each Hermite function is multiplied by a Gaussian envelope.
These non-periodic functions do not have the shift-
invariance properties of sines, cosines, and complex expo-
nentials. As a result, and of specific note, the shift rules in the
time domain and frequency domain are far more compli-
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cated for the fractional Fourier transform than for the classi-
cal Fourier transform.

Thus, brute-force application of the same fractionalization
approach used in the continuous case to the classical discrete
Fourier transform matrix (which does not position time and
frequency center at zero as does the continuous case), could
create undesirable artifacts resulting from the non-
symmetric definition. 1t is, in effect, similar to defining the
continuous fractional Fourier transform by the fractionaliza-
tion of a “one-sided” continuous classical Fourier transform
whose range of integration is from zero to positive infinity
rather than from negative infinity to positive infinity. This
can be expected to have different results. For example,
although it can be shown that pairs of Hermite functions
which are both of odd order or both of even order are indeed
orthogonal on the half-line, pairs of Hermite functions
which are one of odd order and one of even order are not
orthogonal on the half-line. As a result, fractionalization of a
“one-sided” continuous classical Fourier transform whose
range of integration is from zero to positive infinity would
not have the full collection of Hermite functions as its basis
and hence its fractionalization would have different proper-
ties than that of the “two-sided” continuous fractional Fou-
rier transform. However, it is the fractionalization of the
“two-sided” continuous classical Fourier transform that
matches the optics of lenses and other quadratic phase
medium. The fractionalization of a differently defined trans-
form could well indeed not match the optics of lenses and
other quadratic phase medium.

Hence, the brute-force application of the same fractional-
ization approach to the classical discrete Fourier transform
matrix (which does not position time and frequency center at
zero), could for some implementations be expected to create
artifacts resulting from a non-symmetric definition. Some
studies have reported that the discrete fractional Fourier
transform defined from just such “brute force” direct diago-
nallization of the classical discrete Fourier transform report
pathologies and non-expected results. 1t may, then, in some
implementations, be advantageous—or even essential—to
align the zero-origin of the discrete fractional Fourier trans-
form with the zero-origin of the lens action being modeled.

There are a number of ways to define a solution to address
this concern. A first class of approaches would be to modify
the discrete classical Fourier transform so that its zero-
origins are centered with respect to the center of the image
prior to fractionalization. This class of approaches would
match the discrete transform structure to that of the optics it
is used to model. Another class of approaches would be to
modify the image so that the optics being modeled matches
the zero-origins alignment of the classical discrete Fourier
transform matrix, and then proceed with its brute-force frac-
tionalization. Embodiments of the invention provide for
either of these approaches, a combination of these
approaches, or other approaches which match the zero-
origins alignment of a discrete Fourier transform matrix and
the image optics being modeled prior to the fractionalization
of the discrete Fourier transform matrix.

An exemplary embodiment of the first class of approaches
would be to shift the classical discrete Fourier transform to a
form comprising symmetry around the zero-time index and
the zero-frequency index before fractionalization (utilizing
the diagonalization and similarity transformation
operations). This results in a “centered” classical fractional
Fourier transform, and its fractionalization would result in a
“centered” discrete fractional Fourier transform.
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The classical discrete Fourier transform, normalized to be
a unitary transformation, can be represented as an L-by-L
matrix whose element in row p and column q is:

1 o 41)
DFTq,(p, 9) = ﬁemp IXq-I/L

The resulting matrix is depicted in F1G. 15.

The unitary-normalized, classical discrete Fourier trans-
form may be simultaneously shifted in both its original and
its frequency indices by k units by simply adding or subtract-
ing the offset variable k for each of those indices:

1 . 42
DFTgw(p, ) = ﬁemﬂwﬂmﬁqf“ﬂ @)

The shifted transform may be centered by setting k to the
midpoint of the index set {1, 2, 3, .. . L}. This is done by
setting

k=(L+1)/2. 43)

F1G. 17 shows a resulting matrix for the “centered” normal-
ized classical discrete Fourier transform, in which L is taken
as an odd integer. In this figure, the matrix is bisected verti-
cally and horizontally by a central row and column of ele-
ments having a value of 1. These values correspond to the
zero values of the original and frequency indices. It is noted
that if L is an even integer, these terms of value 1 will not
occur, and in this case there will be no term directly repre-
senting a zero frequency nor the original image center.

Due to the reflective aliasing of negative frequency com-
ponents into higher-index frequency samples, the classical
discrete Fourier transform is shifted in such a way towards
the indices centers would typically not compromise redun-
dancy and diminished bandwidth due to symmetry around
zero as might be expected. As an example, consider an
exemplary signal comprising a unit-amplitude cosine wave
of frequency 30 offset by a constant of Y4:

1
cos (2r-30x) + 7

Both the classical discrete Fourier transform and the clas-
sical continuous Fourier transform naturally respond to the
complex exponential representation, specifically

1

 pi60mx | 45)

1 1
e e
2° ]

as is well known to those skilled in the art. In the unshifted
(i.e., k=0) case, the classical discrete Fourier transform acts
on a signal such as this would produce a frequency-domain
output like that depicted in F1G. 18A. In this figure, the
classical discrete Fourier transform is shown acting on a
signal sampled at 201 sample points {0, 1,2, 3, ..., 199,
200}. The constant term of Y4 appears at zero frequency
(frequency point 1 in the sequence), the positive frequency
component Y2 e’°°™ term appears at frequency 30
(frequency point 31 in the sequence) and the negative fre-
quency component Y2 e7%°™ term is reflected back—
through the far edge of the sampling domain at frequency
200 (frequency point 201)—by the aliasing process to a
location at frequency 170 (frequency point 171 in the
sequence).
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In contrast, F1G. 18B illustrates the “centered” classical
discrete Fourier transform acting on the same signal. Here
the domain of the sampling and frequency indices range
from -100 to +100, specifically {-100, =199, . .. -2, -1, 0,
1,2,...,99,100}. The constant term of Y4 appears at zero
frequency (frequency point 101 in the sequence), the posi-
tive frequency component %2 °*™ term appears at fre-
quency 30 (frequency point 131 in the sequence), but here
the negative frequency component ¥4 &°*™ term appears—
without aliasing—at frequency -30 (frequency point 71 in
the sequence).

This leads to direct interpretations of positive frequency
and negative frequency discrete impulses that correspond
with positive frequency and negative frequency Dirac delta
functions that would appear as the classical continuous Fou-
rier transform. More importantly, this re-configuring of the
computational mathematics of the underlying discrete Fou-
rier transform matrix gives a far more analogous fractional-
ization to that of the continuous fractional Fourier transform
than the discrete fractional Fourier transform described in
most publications (which are based on the unshifted classi-
cal discrete Fourier transform matrix definition). Of course,
care must be taken to avoid artifacts created by frequency
aliasing effects as would be known to, clear, and readily
addressable to one skilled in the well-established art of
frequency-domain numerical image processing.

For a monochrome rectangular NxM image X(r,s), the
unshifted classical discrete Fourier transform result Y(m,n)
is, as is well known to one skilled in the art, given by an
expression such as:

(46)

1z
1=

Y(n, m) = DFT) (s, M)DFT i (r, n)X(r, s)

s: I

where DFT ;. \(p, q) is as given above, though typically nor-
malized by 1/L rather than

L
=

Incorporating the shift to centered positions of k, =(M+1)/2
and k,=(N+1)/2, one obtains:

Y(n, m)= (47
N+1 M+l
=z oz
Z Z DFT v 1y2,m (s, MIDFT (4128 (r, m)X(r, §)
T
=" =3

Taking the fractional power (o) of each unshifted classical
discrete Fourier transform matrix as described in previous
sections, the overall computation will become:

Y(n, m) = (48)

7
D DFTpgi1yaa (s MIDF T, 206 mX(E, 5)

M+l

Finally, adapting the image notation to unfocused source

image U(r,s) and corrected image C(m,n) yields the overall
operation:
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Nel Ml
2 2
D) DFTyea(s MIDFT, o & nUG, 5)
_ N+l M+l
=N M

In the more general case, one can leave the centerings k,
and k,, unspecified so that they may be set to zero to obtain
the unshifted version, or they may be set to k, ,=(M+1)/2 and
k,=(N+1)/2 to obtain the centered version. Embodiments of
the invention provide for both of these as well as other
equivalent or analogous formulations. Of course, it is under-
stood by one skilled in the art that all the summing opera-
tions above may be readily expressed as matrix and tensor
operations, with and within the techniques of
fractionalization, iterative computation, reuse of stored and/
or precomputed values, handling of color images, etc., may
be directly and straightforwardly applied.

The contrasting second class of approaches for aligning
the center of the numerical transform and that of the images
involves adapting the images to the centering of the numeri-
cal transforms. An exemplary embodiment of this second
class of approaches could begin with the partition of an
original image into, for example, four quadrant images sepa-
rated by a pair of perpendicular lines that intersect at the
center of the original image.

Referring now to F1G. 19, image 1900 is shown having
height h and width w. The image has a natural center 1950
which corresponds to that of the center line of the lens or
equivalent optical element as described above. Vertical
edges 1912 and 1913 are indexed with extremes of —h/2 and
+h/2 with center index zero as with example element 1901.
Similarly, horizontal edges 1902 and 1903 are indexed with
extremes of —w/2 and +w/2 with center index zero as with
example element 1911. In contrast to the first class of
approaches described above, this exemplary embodiment of
a second class of approaches utilizes an image which is sepa-
rated along perpendicular lines into four parts, as illustrated
in F1G. 20.

Each of the four distinct quadrant parts 2001, 2002, 2003,
and 2004 of the original image 1900 may be treated as an
isolated image 2001a, 2002a, 2003a, and 2004a with its own
zero-origins in a far corner, matching in abstraction the zero-
corner attribute of the discrete classical Fourier transform.
The coordinates of the four quadrant images may then be
interpreted or realigned, as denoted by blocks 2001b, 2002b,
2003b, and 2004b to match the coordinate system of the
discrete classical Fourier transform.

The brute-force fractionalization of the discrete classical
Fourier transform can be applied to each of these to obtain
four quadrant transformed images, denoted by transformed
images 2001c, 2002c, 2003c, and 2004c. The transformed
images 2001c, 2002c, 2003c, and 2004c can then be inter-
pretively or operationally realigned and reassembled, result-
ing in reassembled images 2001d, 2002d, 2003d, and 2004d.
The reassembled images 2001d, 2002d, 2003d, and 2004d
may then be used to form the larger composite image 2010
that matches the quadrant configuration of the original
image 1900. Without undergoing any additional processing,
composite image 2010 would typically have edge effects at
the quadrant boundaries.

1f desired, these edge effects may be resolved, softened, or
eliminated by performing additional calculations. For
example, a second pair, or more, of perpendicular lines can
be used to partition the original image in a manner that dif-
fers from that which is shown in F1G. 20 (for example,
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rotated and/or shifted with respect the original pair). Then,
the process shown and described in conjunction with F1G.
20 may then be applied to these distinctly different quadrants
as well. The generated calculations may be cross-faded or
pre-emphasized and added to produce a composite image
with significantly diminished boundary edge-eftect artifacts.

Software and Hardware Realizations

Typically, each of the various techniques described herein
are invariant of which underlying discrete Fourier transform
matrix is fractionalized to define the discrete fractional Fou-
rier transform matrix. Although embodiments of the present
invention may be implemented using the exemplary series of
operations depicted in the figures, those of ordinary skill in
the art will realize that additional or fewer operations may be
performed. Moreover, it is to be understood that the order of
operations shown in these figures is merely exemplary and
that no single order of operation is required. In addition, the
various procedures and operations described herein may be
implemented in a computer-readable medium using, for
example, computer software, hardware, or some combina-
tion thereof.

For a hardware implementation, the embodiments
described herein may be implemented within one or more
application specific integrated circuits (AS1Cs), digital sig-
nal processors (DSPs), digital signal processing devices
(DSPDs), programmable logic devices (PLDs), field pro-
grammable gate arrays (FPGAs), processors, controllers,
microcontrollers, microprocessors, other electronic units
designed to perform the functions described herein, or a
combination thereof.

For a software implementation, the embodiments
described herein may be implemented with modules, such as
procedures, functions, and the like, that perform the func-
tions and operations described herein. The software codes
can be implemented with a software application written in
any suitable programming language and may be stored in a
memory unit, such as memory 208 or memory 306, and
executed by a processor. The memory unit may be imple-
mented within the processor or external to the processor, in
which case it can be communicatively coupled to the proces-
sor using known communication techniques. Memory 306
may be implemented using any type (or combination) of
suitable volatile and non-volatile memory or storage devices
including random access memory (RAM), static random
access memory (SRAM), electrically erasable program-
mable read-only memory (EEPROM), erasable program-
mable read-only memory (EPROM), programmable read-
only memory (PROM), read-only memory (ROM), magnetic
memory, flash memory, magnetic or optical disk, or other
similar memory or data storage device.

The programming language chosen should be compatible
with the computing platform according to which the soft-
ware application is executed. Examples of suitable program-
ming languages include C and C++. The processor may be a
specific or general purpose computer such as a personal
computer having an operating system such as DOS,
Windows, OS/2 or Linux; Macintosh computers; computers
having JAVA OS as the operating system; graphical worksta-
tions such as the computers of Sun Microsystems and Sili-
con Graphics, and other computers having some version of
the UNIX operating system such as AlX or SOLARIS of
Sun Microsystems; or any other known and available operat-
ing system, or any device including, but not limited to, lap-
tops and hand-held computers.

While the invention has been described in detail with ref-
erence to disclosed embodiments, various modifications
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within the scope of the invention will be apparent to those of
ordinary skill in this technological field. It is to be appreci-
ated that features described with respect to one embodiment
typically may be applied to other embodiments. Therefore,
the invention properly is to be construed with reference to
the claims.
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What is claimed is:

1. A method performed by a numerical processor for
approximating the evolution of images propagating through
a physical medium by calculating a fractional power of a
numerical operator, said numerical operator being defined
by said physical medium and comprising a diagonalizable
numerical linear operator raised to a power (o), said method
comprising:

(a) representing a plurality of images using an individual

data array for each of said plurality of images;

(b) representing said numerical operator with a linear
operator formed by multiplying an ordered similarity
transformation operator (P) by a correspondingly-
ordered diagonal operator (A), the result of which is
multiplied by an approximate inverse (P~') of said
ordered similarity transformation operator (P);

(c) raising diagonal elements of said correspondingly-
ordered diagonal operator (A) to said power (o) to pro-
duce a fractional power diagonal operator;

(d) multiplying said fractional power diagonal operator by
an approximate inverse of said ordered similarity trans-
formation operator (P~*) to produce a first partial result;

(e) multiplying [a] ke data array of one of said plurality of
images by said ordered similarity transformation opera-
tor (P) to produce a modified data array;

() multiplying said modified data array by said first par-
tial result to produce said fractional power of said
numerical operator; [and]

(g) repeating operations (e) and (f) for each of said plural-
ity of images, and

(h) producing a transformed image from the modified data
array for each of said plurality of images.

2. The method according to claim 1, wherein said data

array, for each of said plurality of images, is a vector.

3. The method according to claim 1, wherein said data
array, for each of said plurality of images, is a matrix.

4. The method according to claim 3, wherein each of said
plurality of matrices represent a monochrome image.

5. The method according to claim 3, wherein each of said
plurality of matrices represent a luminance component of a
represented image.

6. The method according to claim 3, wherein each of said
plurality of matrices represent a chroma component of a
represented image.

7. The method according to claim 1, wherein said data
array, for each of said plurality of images, is a tensor.

8. The method according to claim 7, wherein each of said
plurality of tensors represent a color image.

9. The method according to claim 1, wherein said numeri-
cal operator comprises a representation of a discrete Fourier
transform.

10. The method according to claim 9, wherein said dis-
crete Fourier transform comprises a one-dimensional trans-
formation acting on vectors.

11. The method according to claim 9, wherein said dis-
crete Fourier transform comprises a two-dimensional trans-
formation acting on matrices.

12. The method according to claim 11, wherein said two-
dimensional discrete Fourier transform is represented as a
tensor product of two one-dimensional discrete Fourier
transforms, wherein a first one of said two one-dimensional
discrete Fourier transforms is uniquely associated with rows
of said data array, and a second one of said two one-
dimensional discrete Fourier transforms is uniquely associ-
ated with columns of said data array.

13. The method according to claim 1, wherein said
numerical operator comprises a matrix.
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14. The method according to claim 13, wherein said
ordered similarity transformation operator (P) comprises an
array formed from eigenvectors of said numerical operator.

15. The method according to claim 14, wherein said
correspondingly-ordered diagonal operator (A) comprises a
diagonal matrix of eigenvalues corresponding to said eigen-
vectors which are arranged in corresponding order relative to
said eigenvalues.

16. The method according to claim 1, wherein said multi-
plying accomplished in operations (b), (d), (e), and (f) is
accomplished using matrix multiplication.

17. The method according to claim 1, wherein said
numerical operator comprises a tensor.

18. The method according to claim 1, wherein said
ordered similarity transformation operator (P) comprises a
matrix.

19. The method according to claim 1, wherein said multi-
plying of said approximate inverse of said ordered similarity
transformation operator and said correspondingly-ordered
diagonal operator is realized by multiplying each column of
said ordered similarity transformation operator by a value of
a diagonal element of a corresponding row of said
correspondingly-ordered diagonal operator.

20. The method according to claim 1, wherein said
numerical operator comprises a zero origin which matches a
zero origin of each of said plurality of images.

21. The method according to claim 20, said method fur-
ther comprising:

shifting an index of said numerical operator so that said
zero origin of said numerical operator matches said
zero origin of each of said plurality of images.

22. The method according to claim 20, wherein said plu-

rality of images form a composite image.

23. A method performed by a numerical processor for
approximating the evolution of images propagating through
a physical medium by calculating a fractional power of a
numerical operator, said numerical operator being defined
by said physical medium and comprising a diagonalizable
numerical linear operator raised to a power (o) having any
one of a plurality of values, said method comprising:

(a) representing an image using a data array;

(b) representing said numerical operator with a linear
operator formed by multiplying an ordered similarity
transformation operator (P) by a correspondingly-
ordered diagonal operator (A), the result of which is
multiplied by an approximate inverse (P~') of said
ordered similarity transformation operator (P);

(c) raising diagonal elements of said correspondingly-

ordered diagonal operator (A) to one of said plurality of s

values of said power (o) to produce a fractional power
diagonal operator;

(d) multiplying said fractional power diagonal operator by
an approximate inverse of said ordered similarity trans-
formation operator (P~*) to produce a first partial result;

(e) multiplying said data array by said ordered similarity
transformation operator (P) to produce a modified data
array;

(f) multiplying said modified data array by said first par-
tial result to produce said fractional power of said
numerical operator; [and]

(g) repeating operations (¢) and (d) for each of said plural-
ity of values of said power (o), and

(h) producing a transformed image from the modified data
array for each of said plurality of images.

24. The method according to claim 23, wherein said data

array, for each of said plurality of images, is a vector.
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25. The method according to claim 23, wherein said data
array, for each of said plurality of images, is a matrix.

26. The method according to claim 25, wherein each of
said plurality of matrices represent a monochrome image.

27. The method according to claim 25, wherein each of
said plurality of matrices represent a luminance component
of a represented image.

28. The method according to claim 25, wherein each of
said plurality of matrices represent a chroma component of a
represented image.

29. The method according to claim 23, wherein said data
array, for each of said plurality of images, is a tensor.

30. The method according to claim 29, wherein each of
said plurality of tensors represent a color image.

31. The method according to claim 23, wherein said
numerical operator comprises a representation of a discrete
Fourier transform.

32. The method according to claim 31, wherein said dis-
crete Fourier transform comprises a one-dimensional trans-
formation acting on vectors.

33. The method according to claim 31, wherein said dis-
crete Fourier transform comprises a two-dimensional trans-
formation acting on matrices.

34. The method according to claim 33, wherein said two-
dimensional discrete Fourier transform is represented as a
tensor product of two one-dimensional discrete Fourier
transforms, wherein a first one of said two one-dimensional
discrete Fourier transforms is uniquely associated with rows
of said data array, and a second one of said two one-
dimensional discrete Fourier transforms is uniquely associ-
ated with columns of said data array.

35. The method according to claim 23, wherein said
numerical operator comprises a matrix.

36. The method according to claim 35, wherein said
ordered similarity transformation operator (P) comprises an
array formed from eigenvectors of said numerical operator.

37. The method according to claim 36, wherein said
correspondingly-ordered diagonal operator (A) comprises a
diagonal matrix of eigenvalues corresponding to said eigen-
vectors which are arranged in corresponding order relative to
said eigenvalues.

38. The method according to claim 23, wherein said mul-
tiplying accomplished in operations (b), (d), (e), and (f) is
accomplished using matrix multiplication.

39. The method according to claim 23, wherein said
numerical operator comprises a tensor.

40. The method according to claim 23, wherein said
ordered similarity transformation operator (P) comprises a
matrix.

41. The method according to claim 23, wherein said mul-
tiplying of said approximate inverse of said ordered similar-
ity transformation operator and said correspondingly-
ordered diagonal operator is realized by multiplying each
column of said ordered similarity transformation operator by
a value of a diagonal element of a corresponding row of said
correspondingly-ordered diagonal operator.

42. The method according to claim 23, wherein said
numerical operator comprises a zero origin which matches a
zero origin of said image.

43. The method according to claim 42, said method fur-
ther comprising:

shifting an index of said numerical operator so that said

zero origin of said numerical operator matches said
zero origin of said image.

44. The method according to claim 42, wherein said
image is one portion of a composite image.

45. A computer-readable medium containing instructions
for controlling a computer system to approximate the evolu-
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tion of images propagating through a physical medium by
calculating a fractional power of a numerical operator, said
numerical operator being defined by said physical medium
and comprising a diagonalizable numerical linear operator
raised to a power (@), said controlling provided by said com-
puter system being accomplished according to operations
comprising:

(a) representing a plurality of images using an individual
data array for each of said plurality of images;

(b) representing said numerical operator with a linear
operator formed by multiplying an ordered similarity
transformation operator (P) by a correspondingly-
ordered diagonal operator (A), the result of which is
multiplied by an approximate inverse (P~') of said
ordered similarity transformation operator (P);

(c) raising diagonal elements of said correspondingly-
ordered diagonal operator (A) to said power (o) to pro-
duce a fractional power diagonal operator;

(d) multiplying said fractional power diagonal operator by
an approximate inverse of said ordered similarity trans-
formation operator (P~1) to produce a first partial result;

(e) multiplying a data array of one of said plurality of
images by said ordered similarity transformation opera-
tor (P) to produce a modified data array;

(f) multiplying said modified data array by said first par-
tial result to produce said fractional power of said
numerical operator; [and]

(g) repeating operations (e) and (f) for each of said plural-
ity of images, and

(h) producing a transformed image from the modified data
array for each of said plurality of images.

46. A computer-readable medium containing instructions
for controlling a computer system to approximate the evolu-
tion of images propagating through a physical medium by
calculating a fractional power of a numerical operator, said
numerical operator being defined by said physical medium
and comprising a diagonalizable numerical linear operator
raised to a power (o) having any one of a plurality of values,
said controlling provided by said computer system being
accomplished according to operations comprising:

(a) representing an image using a data array;

(b) representing said numerical operator with a linear
operator formed by multiplying an ordered similarity
transformation operator (P) by a correspondingly-
ordered diagonal operator (A), the result of which is
multiplied by an approximate inverse (P~') of said
ordered similarity transformation operator (P);

(c) raising diagonal elements of said correspondingly-
ordered diagonal operator (A) to one of said plurality of
values of said power (o) to produce a fractional power
diagonal operator;

(d) multiplying said fractional power diagonal operator by
an approximate inverse of said ordered similarity trans-
formation operator (P~*) to produce a first partial result;

(e) multiplying said data array by said ordered similarity
transformation operator (P) to produce a modified data
array;

(f) multiplying said modified data array by said first par-
tial result to produce said fractional power of said
numerical operator; [and]

(g) repeating operations (¢) and (d) for each of said plural-
ity of values of said power (o), and

(h) producing a transformed image from the modified data
array for each of said plurality of images.
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47. A method performed by a numerical processor for
numerically modeling an image propagating through a
medium, the method comprising:

representing the image using image data comprising a
plurality of spatially-indexed amplitude values, the
image data comprising a center located relative to the
plurality of spatially indexed amplitude values;

providing a propagation medium model comprising qua-
dratic phase properties which are defined relative to a
propagation centerline of the propagation medium
model;

aligning the propagation centerline of the propagation
medium model velative to the center of the image data;

approximating the propagation medium model with a
numerical operator for applying an index-shifted
numerical fractional Fourier transform operation on
the image data, the numerical operator having
original-domain indices and transform-domain
indices, wherein the original domain indices comprise
a zero original-domain origin that is centered within
the original domain indices, and the transform-domain
indices comprise a zero transform-domain origin that
is centered within the transform-domain indices;

aligning the zero original-domain origin relative to the
center of the image data to produce transformed image
data comprising-a zero frequency-domain origin that is
centered within the transform-domain indices; and

producing a transformed image from the transformed

image data of the image.

48. The method of claim 47, wherein the propagation
medium model corresponds to effects induced by a single
lens.

49. The method of claim 47, wherein the propagation
medium model corresponds to effects induced by a system of
lenses.

50. The method of claim 47, wherein the propagation
medium model corresponds to effects induced by graded-
index material.

51. The method of claim 50, wherein said graded-index
material is an optical fiber.

52. The method of claim 47, wherein the image data com-
prises an image formed by light.

53. The method of claim 47, wherein the image data com-
prises an image formed by a particle beam.

54. The method of claim 47, wherein the transformed
image data is structured to permit correction of misfocus in
the image.

55. The method of claim 47, wherein the index-shifted
numerical fractional Fourier transform operation further
comprises a fractional power which is an adjustable param-
eter.

56. The method of claim 47, wherein the modeled medium
comprises a spatial separation.

57. The method of claim 47, wherein the index-shifted
numerical fractional Fourier transform operation is
obtained by reorganizing operations on the eigenvectors for
a traditional numerical discrete Fourier transform matrix or
tensor.

58. The method of claim 47, wherein the center of the
image data is either an exact center or an approximate cen-
ter.



