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HIGH-PERFORMANCE CLOSED-FORM 
SINGLE-SCAN CALCULATION OF 

OBLONG-SHAPE ROTATION ANGLES FROM 
IMAGE DATA OF ARBITRARY SIZE AND 
LOCATION USING RUNNING SUMS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of US. application Ser. 
No. 13/441,842, ?ledApr. 7, 2012, Which is a continuation of 
US. application Ser. No. 12/724,413, ?led on Mar. 15, 2010, 
now US. Pat. No. 8,170,346, issued May 1, 2012, Which 
claims bene?t of priority from US. Provisional Application 
No. 61/210,250, ?led Mar. 14, 2009, the contents ofWhich are 
incorporated herein. 

FIELD OF THE INVENTION 

This invention relates to a method for determining the yaW 
angle of an oblong shape binary image, and in particular a 
method for determining the yaW angle using only a single 
pass of the binary data contained in the image. 

DESCRIPTION OF THE RELATED ART 

A binary image provided by a proximity sensing system, 
pressure sensing system, optical sensing system, image pro 
cessing system, simulation program, etc. may comprise one 
or more contiguous shapes, these shapes comprising pixels 
assigned one binary value that are surrounded by a region 
comprising pixels assigned the opposite binary value. 

In some situations, one or more of these contiguous shapes 
may be oblong in geometric form. This oblong shape may 
further be oriented in an angular position With respect to 
coordinate axes of the binary image (for example roWs and 
columns) as suggested in FIGS. 1a-1c.An example of such a 
shape is that of a ?nger in contact With a proximity, pressure, 
optical, or other form of user interface touchpad, touch 
screen, or touch surface. An exemplary arrangement is sug 
gested in FIG. 2. Here the orientation angle, taken With 
respect to the roWs and columns of the image data produced 
by the touchpad sensor system, corresponds to the rotational 
yaW angle of the ?nger With respect to the vertical, horizontal, 
or other axes-system associated With or imposed on the touch 
pad sensor system. Such an arrangement is taught, for 
example, in US. Pat. No. 6,570,078. 

In an exemplary arrangement pertaining to these and other 
types of proximity, pressure, optical imaging systems, a sen 
sor array is interfaced to a data acquisition element. In some 
embodiments pertaining to these and other types of proxim 
ity, pressure, optical imaging systems, the data acquisition 
element may direct addressing, synchronization, stimulus, 
and/or other types of control signals to the sensor. In other 
embodiments, the sensor array may provide a stream of data, 
a data frame similar to an image, or other forms of proximity, 
pressure, and/or optical image measurement data to the data 
acquisition element. The data acquisition element provides 
measurement data to an algorithm executing on a hardWare 
computer processor element. In an exemplary arrangement 
pertaining to these and other types of proximity, pressure, 
optical imaging systems, the data acquisition element may 
comprise an additional algorithm running on the same hard 
Ware computer processor element, or another hardWare com 
puter processor element. The hardWare computer processor 
element(s) may comprise a CPU as found in a desktop, laptop, 
tablet, or handheld computing device, and embedded proces 
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sor, a signal processor chip, etc. FIG. 3 provides an exemplary 
high-level representation of these concepts. In an embodi 
ment, the production of binary image may include operations 
such as ?ltering or statistics-based processing to suppress 
noise in the measurements, non-operating sensor elements, 
missing data elements, etc. 
The angular orientation, or rotation, With respect to a ?xed 

reference orientation may be calculated in a number of Ways. 
For example, a least squares method may be used to ?t a line 
through the image data, and the slope of the ?tted line may be 
converted to an angle by an inverse tangent or inverse cotan 
gent function. Such an arrangement is taught, for example, in 
US. Pat. No. 6,570,078. Such a system can be advantageous 
because the least-squares calculation can be organiZed into a 
small collection of running sums that can be updated during 
scanning of the sensor. At the end of a scan, this small col 
lection of running sums is presented to a simple post-scan 
calculation to determine the best-?t line slope, Which as 
described above is presented to an inverse tangent or inverse 
cotangent function to recover the angular orientation or rota 
tion. It is noted that the least-squares line ?t relies on sum 
ming the square distance of deviation from an unknoWn 
parameteriZed line, and the line parameters are then algebra 
ically calculated so as to minimiZe the sum of the square 
distance deviations. FIG. 4 depicts an exemplary high-level 
representation of this type of arrangement. 

Another Way to calculate angular orientation or rotation 
With respect to a ?xed reference orientation is though use of 
an eigenvector approach applied to a 2x2 covariance matrix, 
planar moment of inertia (matrix) tensor, or other 2><2 qua 
dratic-form matrix. The covariance matrix, planar moment of 
inertia (matrix) tensor, and their associated (quadratic form) 
variants rely on summing the square distance of deviation 
from a associated centroid (roW center and column center). 
The eigenvectors of the covariance matrix, planar moment 

of inertia (matrix) tensor, and other quadratic-form matrices 
of the like can be interpreted as rotation angles and related to 
columns of a 2x2 rotation matrix. Such an approach may be 
found in the pending US. patent application Ser. No. 12/541, 
948 and elseWhere, for example in US. Pat. No. 4,748,676. 
The angle of a selected eigenvector can be calculated by 
taking the ratio of the tWo components of the eigenvector and 
presenting this ratio to an inverse tangent or inverse cotan 
gent. 

There are at least tWo areas of practical dif?culties With the 
latter approach that are addressed by the present invention. 
First, ?nding eigenvectors typically involves a complicated 
algorithm. The present invention overcomes this by providing 
a closed-form solution for the components of a selected 
eigenvector su?icient to determine the angle of rotation. Sec 
ond, if the calculations are made directly from the de?nitions, 
tWo passes through the data are required: a ?rst pass must be 
made through the full set of image data in order to ?rst 
determine the centroid (roW center and column center), then a 
second pass must be made through the full set of image data 
in order to calculate the square of the distance of separation of 
a given pixel from the centroid. FIG. 5 shoWs an exemplary 
arrangement calling out these practical concerns. 
The above attributes of the latter approach has several 

disadvantages. For example in large images, the data must be 
stored or a long neW scan must be started. Regardless of the 
image siZe, should the image data not be stored, a rapid 
change in the image data from scan to scan can corrupt a 
calculation that uses the centroid calculated from a previous 
scan to ?nd the squared separation distance from the centroid 
calculated in a current scan. The present invention overcomes 
these and other related problems by decomposing the squared 
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separation distance calculations in such a Way that the cen 
troid is not needed until a post-scan calculation, and the 
decomposition involves running sums that may be calculated 
during the same scan used to create the running sums for the 
roW and column centers. In many applications, for example 
those required to be responsive in user-perceived real-time 
(such as in user interface applications, real-time image rec 
ognition, or real-time machine vision) and/or executing on 
one or more hardWare processors With limited or otherWise 
constrained computation poWer, available instruction cycles, 
available memory, etc., these disadvantages can be signi?cant 
and preclude practical use of the latter approach. Thus, a more 
e?icient and realistic implementation of yaW angle calcula 
tion is desirable. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The above and other aspects, features and advantages of the 
present invention Will become more apparent upon consider 
ation of the folloWing description of preferred embodiments 
taken in conjunction With the accompanying draWing ?gures, 
Wherein: 

FIGS. la-lc depict exemplary oblong contiguous shapes 
comprised Within a binary image, Wherein the shapes may be 
oriented in an angular position With respect to coordinate axes 
of the binary image; 

FIG. 2 depicts an exemplary arrangement Wherein a ?nger 
in contact With a proximity, pressure, optical, or other form of 
user interface touchpad, touch screen, or touch surface’ 

FIG. 3 provides an exemplary high-level representation of 
exemplary systems relevant to the present invention; 

FIG. 4 depicts an exemplary hi gh-level representation of an 
exemplary approach for computing an implied yaW angle 
employing a least-squares line ?t and an inverse trigonomet 
ric function; 

FIG. 5 depicts an exemplary hi gh-level representation of an 
exemplary approach for computing an implied yaW angle 
employing an eigenvector of an inertial matrix and an inverse 
trigonometric function, further calling out problematic 
implementation concerns and limitations; 

FIG. 6 depicts an exemplary representation of the invention 
comparable to the exemplary arrangement of FIG. 4; and 

FIG. 7 depicts an exemplary representation of an embodi 
ment of the invention. 

DETAILED DESCRIPTION 

In the folloWing description, reference is made to the 
accompanying draWing ?gures Which form a part hereof, and 
Which shoW by Way of illustration speci?c embodiments of 
the invention. It is to be understood by those of ordinary skill 
in this technological ?eld that other embodiments may be 
utiliZed, and structural, electrical, as Well as procedural 
changes may be made Without departing from the scope of the 
present invention. 

Thus the present invention provides a scalable high-perfor 
mance closed-form single-scan calculation of oblong-shape 
rotation angles from binary images of arbitrary siZe using 
running sums. No eigenvector routines are used, and no stor 
age of the image data is required. Only a feW running sums are 
calculated and stored throughout each scan, and the results 
are obtained in closed form by simple post-scan computation. 
The resulting arrangement may be implemented in a form 
such as that depicted in FIG. 6, directly comparable to the 
exemplary arrangement of FIG. 4 and its aforementioned 
advantages. This approach additionally can be used or 
adapted to provide other derived parametric data as Well, for 
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4 
example measures of the oblongness of the oblong-shape via 
closed-form calculations of the eigenvalues. The resulting 
system and/or method may be used for touch or optical user 
interfaces, real -time image recognition, real-time machine 
vision, and other purposes. 

In six-degree-of-freedom rigid motion, the three different 
degrees of angles for roll, pitch, and yaW are commonly 
denoted by the symbols 4), 6, and 11). As an envisioned appli 
cation is recovery of the yaW angle of a ?nger contact image 
With a touchpad system, the rotation angle to be calculated by 
the invention Will be denoted 11). 

In the ?eld of analytical mechanics the moment of inertia 
tensor or matrix is at times regarded as de?ning the orienta 
tion of a solid object in free-space or the plane. The folloWing 
2x2 covariance, planar moment of inertia, or other quadratic 
form matrix is assumed for the algorithm for calculating the 
moment of inertia to calculate the rotation angle 11). 

[RR RC] (1) CR CC 

Here “R” denotes “roW” and “C” denotes “column,” said 
roWs and columns as may be used to organiZe the scan of an 
array sensor or an image data set provided by other means or 
systems. There are several de?nitions for these terms that 
involve inclusions or neglect of normaliZations and the use 
minus signs on the off-diagonal terms. These varying de?ni 
tions end of not affecting the calculations presented herein 
appreciably, so the simplest de?nition (no normalization, no 
off-diagonal negative signs) is provided and commentary 
offered later as to implications of the various de?nitions. As 
Will be seen, this simplest de?nition also offers performance 
advantages in computation, particularly in real-time systems. 
The entries of the matrix as de?ned above (RR, RC, CR, 

and CC) are cumulative sums obtained by the folloWing: 

The double sums may be calculated over all roW and col 
umn index combinations in any order. The variable rO denotes 
the mean roW-coordinate of the non-Zero pixels (i.e., the 
geometric roW center), and the variable cO denotes the mean 
column-coordinate of the non-Zero pixels (i.e., the geometric 
column center). The function th(ri,ci) is a binary-valued {0,1} 
function that represents Whether a measurement or data value, 
p(ri,ci) is greater than a speci?ed threshold t. The value of t 
can be adjusted to suppress the computational impacts of 
loW-level noise in the sensor measurements or other data. 

For example, an exemplary embodiment Would thus during 
a scan assign measurement or data values exceeding t With the 
value of l, and otherWise assign a value of 0. Pixel measure 
ments or data Whose value of th(ri,ci) is 1 Will be referred to 
as “active pixels” While other pixels Will be referred to as 
“non-active pixels.” Multiplying by th(ri,ci) thus excludes 
terms associated With non-active pixels in the computation of 
obtaining aggregated sums because for these the value of 
th(ri,ci) is Zero. 
The quantity RR contains the value of the sum of the square 

of the vertical distance from the geometric center, and the 
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quantity CC contains the value of the sum of the square of the 
horizontal distance from the geometric column center. 

The quantities RC and CR are equivalent and thus inter 
changeable in subsequent calculation. Each is a cumulative 
sum of the product of the vertical and horiZontal distance 
from the geometric center. 

Note the de?nition of each of RR, RC, CR, and CC depend 
on the value of rO and c0. Thus a direct calculation using the 
literal de?nition of RR, RC, CR, and CC Would appear to 
require the values of rO and c0 to be ?rst calculated in advance. 
As mentioned earlier, this could require an entire second pass 
through the image data, but as shoWn later these may be 
calculated in the same scan of the data as that for of rO and c0 
by an innovation of the present invention 
Obtaining Geometric RoW and Column Center 

In many embodiments, measurements from each sensor 
Within an array of sensors (or other data) are acquired and 
values are examined in a speci?ed order. For example, each 
sensor pixel measurement (or other data) may be selected 
according to nested increasing roW and column indices. In 
other embodiments, such as those described in Us. applica 
tion Ser. No. 12/418,605, a distributed scan may be used and 
corresponding separate running sums may be combined in a 
post-scan calculation. 

For simplicity, it can be assumed there is a sequential scan 
of the entire array of sensor array measurements or other 

image data, and that there is only a single contiguous shape 
(or region) of active pixels. More complex situations, such as 
those Where there are multiple contiguous regions of active 
pixels present, can be readily handled by identifying each 
contiguous region of active pixels and computing a separate 
isolated set of running sums (to be described) for each such 
region. Such approaches are discussed in Us. application 
Ser. No. 12/418,605. 
An exemplary embodiment is noW presented for the afore 

mentioned assumed situation of only a single contiguous 
region of active pixels. As each active pixel is encountered, a 
counter variable tval gets incremented by 1. The value of tval 
Will represent the (pixel-count metric of) “area” of the con 
tiguous region of active pixels. At the completion of a scan, 
the value of the geometric roW center may be readily obtained 
by dividing cumulative sum of roW indices of active pixels by 
the number of active pixels. Similarly, the value of the geo 
metric column center can then be readily obtained by dividing 
cumulative sum of column indices of active pixels by the 
number of active pixels. 

For example, let the cumulative sum of roW and column 
indices be represented by the folloWing variables: 
rsum?he cumulative sum of the roW indices of active 

pixels 
csumIthe cumulative sum of the column indices of active 

pixels 
An exemplary implementation may be structured as: 

// scan each roW 

// scan each column 
// ifthe value ofpixel exceeds the 

threshold 
tval++; // increment tval by 1 
rsum += ri; // increment rsum by ri 
csuIn+=ci; // increment csum by ci 

}; 
l‘; 

l‘; 
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6 
Note that in this exemplary programming language imple 

mentation, statements for cumulative rsum and csum 
executed When the if statement is satis?ed, ri and ci do not 
need to be multiplied by the value of th(ri,ci) because When 
the if statement is satis?ed, the value of th(ri,ci) is effectively 
1 and When the if statement is not satis?ed the sum statements 
are skipped over (thus equivalent to a value of 0 for th(ri,ci)). 
At the end of the data array scan the geometric centers of 

roW and column, rO and c0, may be readily calculated in a 
post-scan calculation using the values of cumulative sum 
variables above: 

rsum 

tval 
(7) 

csum 
I (8) 

tval 

The values of these variables may be stored for subsequent 
calculations and/or system output. For example, the values of 
rO and c0 may be output directly as the geometric center of a 
?nger’s contact With a touchpad sensor array. The values of 
tval, rsum and csum may also be stored for subsequent cal 
culations. 

In some embodiments one or more of the values of tval, 
rsum and csum may be used as system output. 
Obtaining Entries of the Covariance Matrix 

If the de?nition of RR, RC, and CC is used directly for the 
calculation, the values of the roW geometric center rO and the 
column geometric center cO obtained above must be used for 
another scan orpass through the data array. This is because, in 
the de?nitions, these expressions depend on the values of 
geometric centers of roWs and columns, rO and c0. 

Given the values of geometric centers of roWs and columns 
rO and co, the values of RR, RC, and CC may be directly 
calculated from their previously provided de?nitions 

RR:EE(ri—rO)2 *lh(7’i,Ci) (9) 

as folloWs: 

// scan each roW 

// scan each column 
// ifthe value ofpixel exceeds the 

threshold 
// increment tval by 1 
// increment R by (ri—r0)A2 
// increment RC by (ri—r0)*(ci—c0) 
// increment CR by (ci—c0)*(ri—r0) 
// increment CC by (ci—c0)A2 

HoWever, a procedure such as this must be done in a second 
pass through the image data because the values of geometric 
centers of roWs and columns rO and c0 must be knoWn in 
advance. As mentioned earlier, the present invention provides 
for expanding the quadratic terms and reorganizing the sums 
above so that the roW geometric center and column geometric 
center are not needed until a post-scan calculation, and the 
decomposition involves a small collection of running sums 
that may be computed along side those needed to calculate the 
roW geometric center and column geometric center. This is 
described beloW. 



the value of rO and c0 can be replaced With other terms, and r0 
and c0 are no longer needed. Speci?cally: 

The covariance matrix can then be calculated in a post-scan 
calculation. Note the variables, rO and c0, are replaced With 
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Consolidation into a Single Scan of Binary Data Array 
As mentioned above, the need for a second scan or pass 

through the data array can be eliminated by expanding the 
quadratic terms involved in the de?nitions of RR, RC, and 
CC. More speci?cally equations for RR, RC, CR, and CC 5 
from above 

can be expanded as folloWs: 

In the above equations, some of the terms that depend on 

(17) 

25 

Zth(ri,ci) is equivalent to tval 
Z(ri*th(ri,ci)) is equivalent to ro*tval 
Z(ci*th(ri,ci)) is equivalent to co*tval 

30 

rval 

tval ' 

cval 
tval I 3 5 

r0 is equivalent to 

00 is equivalent to 

In an exemplary programming language embodiment, 
three neW running sum variables, rrval, ccval, and rcval, may 
be introduced. 40 

rrval:cumulat1ve sum of the square of roW 1nd1ces of active 
pixels; 

ccval:cumulative sum of the square of column indices of 
active pixels; 

rcval:cumulative sum of the product of roW and column 45 
indices of active pixels. 

These running sums can be included in the ?rst scan loop 
Where the cumulative sum of the roW indices (earlier called 
rsum, but renamed rval as used and clearly seen in the exem 
plary algorithm beloW) and column indices (earlier csum, but 
renamed cval as used and clearly seen in the exemplary algo 
rithm beloW) are calculated. The result requires six running 
variables used in the scan: 

50 

tval 
rval 
cval 
rrval 
ccval 
rcval 

55 

rval cval 
_ an _ 

tval tval 65 

in the expansions. 

(13) 

(20) 

An exemplary programming language embodiment can 
then be implemented as folloWs, again as before replacing the 
th(ri,ci) function in the above equations With a common con 
ditional-execution “if” statement. Additionally, a post-scan 
computation is appended after the scan. 

// scan each column 

// if the value of pixel exceeds the 

threshold 

tval++; // increment tval by l 

rrval+=ri*ri; // increment rrval by riAZ 
rval+=ri; // increment rval by ri 

ccval+=ci*ci; // increment ccval by ci 2 
cval+=ci; // increment cval by ci 

rcval+=ri*ci; // increment rcval by ri*ci 

}; // end the scanning loop 

RR=rrval — 2 * (rval/tval) *rval+(rval/tval)?2*tval; 

RC=(rcvalal/tval) *rval+(rval/tval) * cval +(rval/tval) * 

(cval/tval) *tval; 

Additionally, the above equations and programming lan 
guage embodiments can be further simpli?ed in a number of 
Ways. For example: 

[rval]2 I l _ rval2 (21) 
tval * m _ tval 

[0101!]2 I l_ 0vz1l2 (22) 
tval * m _ tval 

(rval cval] _ (rval * cval] (Z3) tval * tval * _ tval 

and 

_ _ _ rval (24) 

2 (r1 * 1h(r1, 01)) = r0 *tval : — *tval : rval 
tval 

. . . cval (25) 

z (01 *1h(r1, 01)) = 00 *tval : * tval : cval 
tval 

Such corresponding simplifying substitutions may be 
advantageously made in programming language embodi 
ments, reducing the computational complexity and poten 
tially reducing the introduction of numerical error. 
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Applying these simpli?cations to the three statements of 
the exemplary post-scan computation 

rval rm! 2 (26) 
RR : WWI-2* — *rval+(—] *tval [val [val 

cval rval rval cm! (27) 
RC : rcval — *rval + — * cval + — * * [val 

[val [val [val [val 

cval cm! 2 (28) 
CC=ccval-Z* *cval+(—] *tval [val [val 

yields the simpli?cation to the post-scan calculation: 

rval2 (29) 
RR : rrval — 

[val 

rval (30) 
RC : rcval- cval* — 

[val 

oval2 (31) 
CC : ccval — 

[val 

For the RR and CC terms, it may appear surprising that the 
cross-product term and a square-term Would evaluate in such 
a Way as to partially cancel out and subsequently results in the 
difference betWeen tWo square terms. However, on occasion 
this phenomena shoWs up in classical mathematic analysis, so 
it should not be disconcerting to one skilled in the art. Spe 
ci?cally it is an inventive step of the present invention to 
structure the mathematics in such a Way as to make this 
cancellation possible and leverage it in an advantageous com 
putation. As a bonus, the RC term also enjoys a similar sim 
pli?cation. 
Closed-Form Expression for the Rotation Angle 

Using the above, a covariance matrix, planar moment of 
inertia (matrix) tensor, or related 2x2 quadratic form matrix 
can be obtained in a simple single scan Without requiring 
storage of the image but rather the storage of only six running 
sums. 

As mentioned in the Introduction, the eigenvectors of the 
covariance matrix, planar moment of inertia (matrix) tensor, 
or other quadratic-form matrix of the like can be interpreted 
as depicting a set of rotated orthogonal coordinates. The angle 
betWeen these rotated coordinates and the original reference 
coordinates can be associated With a rotation angle of the 
oblong active region’s shape. In one interpretation, one of the 
eigenvectors may be used to de?ne the angle. In another 
interpretation, the tWo-dimensional eigenvectors of the 2x2 
covariance matrix may be related to columns of a 2x2 rotation 
matrix. In either case, the angle of a selected eigenvector can 
be calculated by taking the ratio of the tWo components of the 
eigenvector and presenting this ration to an inverse tangent or 
inverse cotangent. This calculated angle can be related to the 
rotation angle of the oblong active region’ s shape. Further, the 
Way the angle is calculated (What ratio to take of elements of 
What eigenvector, Whether inverse tangent or inverse cotan 
gent is used, etc.) can directly incorporate the imposed inter 
pretation of the rotation angle of the oblong active region’s 
shape. 

HoWever, as mentioned in the introduction, in general ?nd 
ing eigenvectors involves a complicated algorithm. The 
present invention overcomes this by providing a closed-form 
solution for the components of a selected eigenvector su?i 
cient to determine the angle of rotation. A closed form solu 
tion can be calculated because the 2x2 eigenvector and eigen 
value problem involves the roots of a simple quadratic 
equation. The Well-knoWn quadratic formula provides a 
closed-form expression for the roots of a simple quadratic 
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10 
equation as long as the coef?cient of the cross-product term is 
non-Zero. For cases Where the coe?icient of the cross-product 
term is non-Zero, then, the eigenvectors and eigenvalues can 
be found in closed form. For cases Where the coe?icient of the 
cross-product term is Zero, it can be readily seen that this 
corresponds to Zero values of the off-diagonal elements of the 
quadratic-form (covariance, planar moment of inertia, etc.) 
matrix Which have a straightforWard geometric interpreta 
tion. In this Way the rotation angle can be directly calculated 
from the entries of the quadratic form matrix Without an 
eigensystem (eigenvector and eigenvalue) algorithm. 

Speci?cally the matrix 

I? 3] 
can be readily shoWn through simple use of the quadratic 
formula to have the eigenvalues of 

(32) 

2 

(34) 

For cases Where c is non-Zero, these eigenvalues can be 
used to calculate a closed-form representation of the eigen 
vectors. The eigenvectors may be normalized in a variety of 
Ways, for example as 

Or by multiplying the eigenvectors above through by a factor 
of 2c, as 

The former representation, to the extent it can be directly 
calculated (rather than from a conversion of the latter repre 
sentation), is advantageous in that the ?rst element of each 
eigenvector is the same as the ratio of the ?rst and second 
elements of the eigenvector (since the denominator of the 
ratio is l). 
A covariance matrix form requires c:b, so the above more 

general eigenvectors simplify to 

As to the inclusion or disregard for normalization in vari 
ous de?nitions of the covariance or inertia matrix, clearly 
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multiplying through all terms a, b, d With a normalization 
factor Would simply cancel out in the above eigenvector 
expressions. It is noted that the eigenvalues Would be scaled, 
but they are not used for the angle calculations to folloW. By 
using a de?nition Without normalization, many extra compu 
tation steps that do not add value can be avoided, improving 
real-time performance and reducing the amount of stored 
code. 

Further, as to the inclusion of minus signs on the tWo 
off-diagonal elements of the covariance or inertia matrix 
called for in some de?nitions, revieW of the above calcula 
tions shoW this to reverse the sign of the angle that Would be 
associated With the eigenvector. The sense of angle direction 
de?nition is an engineering design choice in the calculations 
and may be readily compensated for or handled in other Ways 
to produce the desired computed outcome. By using a de? 
nition Without off-diagonal minus signs, extra computation 
steps that do not add value can be avoided, further improving 
real-time performance and reducing the amount of stored 
code. 

(By Way of comparison, a rotation matrix form requires 
c:—b, so here the more general eigenvectors simplify to 

(41) 

(42) 

The values of RR, RC, and CC can be substituted for a, b, and 
d respectively to obtain a ?rst eigenvector of the covariance 
matrix as 

and a ?rst eigenvector of the rotation matrix as 

a slightly different result.) 
The covariance (or, if applicable, rotation) matrix eigen 

vectors can be then operated upon by inverse tangent or 
inverse cotangent operations to obtain angles With various 
Zero-angle orientations and positive-negative signs a?iliated 
to clockWise and counter-clockwise angle directions. For 
example, to obtain a rotation angle 11) so that a Zero-valued 
angle is associated With the oblong elongation oriented ver 
tically and a positive angle value rotating clockwise, the fol 
loWing expression may be used Where RC is non-Zero: 

When RC is Zero, the above expression become numeri 
cally unde?ned but may be interpreted analytically as having 
a (positive or negative) in?nite value. The inverse cotangent 

12 
function maps in?nite value arguments to a Zero angle, so a 
conditional “lf-Then-Else” expression can be used to provide 
smooth handling of the rotation calculation betWeen rota 
tional angle values Within the range of positive or negative 90 

5 degrees: 

(46) 

The conditional expression can be expanded further to 
handle cases Where the rotation angle is effectively 90 

20 degrees, for example: 

Where the value of rO is greater than co, the value of 11) Will be 
30 set to 

m: 
35 

This can be coded, for example, as follows. 

40 if(RC!=O) // if RC is not equal to Zero 
angle=ArAcCot((RR—CC+sqrt(ARRA2+ 
4*(RC 2)—2*RR*CC+(CC 2)/(2*RC)); 

else if (RR>=CC) // if RC is equal to Zero and if 
RR>=CC 

angle=0; // then the angle is Zero 
else 
angle=PU2; 

45 
// otherwise the angle is PI/Z 

In general, to handle and distinguish the positive 90 degree 
rotation angle and negative 90 degree rotation angle addi 
tional information is needed. Such additional information 
may include, for example, information from pattern recogni 
tion functions, state information from angle-variation track 
ing, etc. 
When used With loW-poWer and/or otherWise busy proces 

sors (for example in small hand-held devices such as cell 
phones, PDAs, game controllers, remote controls, etc.), as 
Well as With restricted Word-siZe arithmetic (for example 
8-bit), it can be advantageous to replace an actual inverse 
tangent or inverse cotangent function With a pre-computed 
table-look-up function as is understood by one skilled in the 
art. 

As indicated above, this approach can be used to provide 
other derived parametric data such as measures of the oblong 
ness of the oblong-shape via closed-form calculations of the 
eigenvalues. If the ratio of the eigenvalues is l, the shape is a 
(non-oblong) circle. The farther the ratio of the eigenvalues is 
from the value of l, the more oblong the shape. 

50 

55 

60 



US 8,639,037 B2 
13 

As the eigenvectors for the covariance matrix (With c:b) 
are 

2 

(49) 

an exemplary closed-form expression for a (ratio of the eigen 
values) measure of oblongness of the shape is: 

oblongness : — 

The variables a, b, and d can be replaced With RR, RC, and 
CC as before to include as part of the post-scan algorithm 
described earlier. 

Note that as this oblongness measure is a ratio of the 
eigenvalues, any scaling applied equally to both of the eigen 
values Will cancel out. As a result, like the angle calculation, 
this oblongness measure is not affected by Whether normal 
iZation is used or not in the de?nition of the covariance 
matrix. 

Similarly, as the oblongness measure depends on the 
square of the B (bIRC) term, any off-diagonal minus signs 
Which may or may not be used in the de?nition of the cova 
riance matrix have no effect. 

(By Way of comparison, the eigenvectors for the rotation 
matrix (With c:—b) are 

2 

(52) 

another exemplary closed-form expression for a (ratio of the 
eigenvalues) measure of oblongness of the shape is: 

oblongness : — 

a slightly different result.) 

A ?nal result combining the various innovations of the 
invention results in a scalable high-performance closed-form 
single-scan calculation of oblong-shape rotation angles from 
binary images of arbitrary siZe using running sums. No eigen 
vector routines are used, and no storage of the image data is 
required. Only six running sums are calculated and stored 
throughout each scan, and the results are obtained in closed 
form by simple post-scan computation. This approach can be 
used to provide other derived parametric data as Well, for 
example measures of the oblongness of the oblong-shape via 
closed-form calculations of the eigenvalues. An exemplary 
implementation is suggested in FIG. 7. An exemplary pro 
gramming language embodiment is provided beloW: 
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// scan each roW 

// scan each column 
// if the value of pixel exceeds the 

threshold 
tval++; // increment tval by l 
rrval+=ri*ri; // increment rrval by ri 2 
rval+=ri; // increment rval by ri 
ccval+=ci*ci; // increment ccval by ci 2 
cval+=ci; // increment cval by ci 
rcval+=ri*ci; // increment rcval by ri*ci 

}; 
}; // end the scanning loop 

// begin post-scan calculations 
// roW center result for output 
//column center result for output 

angle=0; // then the angle is Zero 
else 
angle=PI/2; // otherwise the angle is PI/Z 

// angle result for output 
Oblongness = ( (RR+(;C+sq1t(RARA2+4*(RCA2)—2*RR*CC+(CCA2) )/ 

( (RR+CC-sq1t(RR 2+4* (RC 2)—2*RR*CC+(CC 2) ); 
// oblongness result for output 

The computational ef?ciency may be improved further by 
a single reusable computation of some expressions such as: 

and, in some implementations, replacing the ArcCot function 
With simply-evaluated pieceWise approximations and/ or a 
table lookup of pre-computed values. 

While the invention has been described in detail With ref 
erence to disclosed embodiments, various modi?cationsi 
Within the scope of the invention Will be apparent to those of 
ordinary skill in this technological ?eld. It is to be appreciated 
that features described With respect to one embodiment typi 
cally may be applied to other embodiments. Therefore, the 
invention properly is to be construed With reference to the 
claims. 
The invention claimed is: 
1. A computer-implemented method for computing an ori 

entation angle of an image of an oblong shape using a pro 
cessor, the image of the oblong shape comprising thresholded 
pixels Within image data, Wherein each thresholded pixel is a 
scalar measurement comprising a numerical value exceeding 
a threshold, the method comprising: 

determining a cumulative sum of the square of roW indices 
of thresholded pixels, Wherein an thresholded pixel is 
de?ned as a measurement data element Within the 
binary-valued image data having a speci?ed binary 
numerical value; 

determining a cumulative sum of the square of column 
indices of thresholded pixels; determining a cumulative 
sum of the product of roW and column indices of thresh 
olded pixels; 

determining a value according to a closed form algebraic 
formula comprising the cumulative sum of the square of 
roW indices, the cumulative sum of the square of column 
indices, and the cumulative sum of the product of roW 
and column indices; 

determining the computed orientation angle of the oblong 
shape of binary-valued image data according to the 
value using an inverse trigonometric function 
operation; and 

providing the computed orientation angle as an output. 
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2. The method of claim 1 wherein the additional software 
provides a user interface function. 

3. The method of claim 2 Wherein the computed orientation 
angle is used as a user interface quantity for controlling at 
least one aspect of a computer application. 

4. The method of claim 1 Wherein the image data is pro 
duced from measurement data provided by a tactile sensor 
array. 

5. The method of claim 4 Wherein the tactile sensor array 
comprises a tactile proximity sensor. 

6. The method of claim 4 Wherein the tactile sensor array 
comprises a tactile pressure sensor. 

7. The method of claim 4 Wherein the image data is pro 
duced at least in part responsive to contact of a human hand 
With the tactile sensor array. 

8. The method of claim 4 Wherein the image data is pro 
duced by an optical sensing system. 

9. The method of claim 1 Wherein the inverse trigonometric 
function operation comprises an inverse cotangent function. 

10. The method of claim 1 Wherein the processor com 
prises an embedded controller. 

11. A computer implemented data processing system com 
prising: a memory that stores image data; and a processor in 
communication With the memory that: 

receives the image data, the image data comprising an array 
of pixels having roWs and columns Wherein each roW 
and column has a unique associated index value, and 
each pixel having has a unique roW index value and 
column index value Wherein each pixel further com 
prises a scalar measurement, the image data comprising 
a subset of pixels having values above a threshold value 
that are arranged in an oblong shape Within the image 
data; 

perform threshold operations on each pixel of the image 
data to produce binary image data to generate the oblong 
shape; 

computes the geometric center of the oblong shape, the 
geometric center comprising a roW center value and a 
column center value; 

de?nes a corresponding centered roW index value by sub 
tracting the roW center value from the roW index value 
for each roW index value; 

20 

25 

30 

35 

40 

16 
de?nes a corresponding centered column index value by 

subtracting the column center value from the column 
index value for each column index value; 

computes a ?rst cumulative sum of the square of centered 
roW index values of the subset of pixels having values 
above the threshold value, second cumulative sum of the 
square of centered column index values of the subset of 
pixels having values above the threshold value, and a 
third cumulative sum of the product of centered roW 
index values and centered column index values of the 
subset of pixels having values above the threshold value; 

computes one or more numerical quantities Within a closed 
form algebraic formula for a ratio of tWo terms of an 
inertial matrix de?ned by the binary-valued image data 
using each of ?rst, second, and third cumulative sums; 

transforms the ratio into a calculated numerical angle value 
using an inverse trigonometric function operation; and 

provides the calculated numerical angle value as an output. 
12. The system of claim 11 Wherein the additional softWare 

provides a user interface function. 
13. The system of claim 12 Wherein the calculated numeri 

cal angle value is used as a user interface quantity for con 
trolling at least one aspect of a computer application. 

14. The system of claim 11 Wherein the image data is 
produced from measurement data provided by a tactile sensor 
array. 

15. The system of claim 14 Wherein the tactile sensor array 
comprises a tactile proximity sensor. 

16. The system of claim 14 Wherein the tactile sensor array 
comprises a tactile pressure sensor. 

17. The system of claim 14 Wherein the image data is 
produced at least in part responsive to contact of a human 
hand With said tactile sensor array. 

18. The system of claim 14 Wherein the image data is 
produced by an optical sensing system. 

19. The system of claim 11 Wherein the inverse trigono 
metric function operation comprises an inverse cotangent 
function. 

20. The system of claim 11 Wherein the processor com 
prises an embedded controller. 

* * * * * 


