(12) United States Patent
 Ludwig

(54) HIGH-PERFORMANCE CLOSED-FORM

SINGLE-SCAN CALCULATION OF OBLONG-SHAPE ROTATION ANGLES FROM IMAGE DATA OF ARBITRARY SIZE AND LOCATION USING RUNNING SUMS
(71) Applicant: Lester F. Ludwig, Belmont, CA (US)
(72) Inventor: Lester F. Ludwig, Belmont, CA (US)
(73) Assignee: Lester F. Ludwig, San Antonio, TX (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.
(21) App1. No.: 13/846,830
(22) Filed:

Mar. 18, 2013
Prior Publication Data
US 2013/0208011 A1
Aug. 15, 2013

Related U.S. Application Data

(63) Continuation of application No. 13/441,842, filed on Apr. 7, 2012, which is a continuation of application No. 12/724,413, filed on Mar. 15, 2010, now Pat. No. 8,170,346.
(60) Provisional application No. 61/210,250, filed on Mar. 14, 2009.
(51) Int. Cl.

G06K 9/46 (2006.01)
(52) U.S. Cl.

USPC
382/203; 382/162; 382/167; 382/165; 382/169; 382/170; 382/220; 382/218

Field of Classification Search
CPC \qquad G06T 7/004; G06T 11/006
USPC 382/203, 162, 167, 165, 169, 170, 220, 382/218
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,748,676 A	$5 / 1988$	Miyagawa	
$4,899,137$	A	$2 / 1990$	Behrens et al.
	(Continued)		

FOREIGN PATENT DOCUMENTS
EP

$0574213 \mathrm{BI} 3 / 1999$
 OTHER PUBLICATIONS

Moog, R. A., The Human Finger-A Versatile Electronic Music Instrument Component, Audio Engineering Society Preprint, Nov. 4-7, 1977, New York, NY, 4 pgs.
(Continued)
Primary Examiner - Mike Rahmjoo
(74) Attorney, Agent, or Firm - Procopio, Cory, Hargreaves \& Savitch LLP

(57)

ABSTRACT
A method and system for calculating oblong-shape rotation angles from image data of arbitrary size using running sums is described without the need of eigenvector routines and storage of the image data. The oblong shape may be of arbitrary size and location and need not be precisely elliptical. A few running sums are calculated and stored throughout each scan, and the results are obtained in closed form by simple post-scan computation. An algorithmic embodiment can execute on one or more hardware processors with limited or otherwise constrained computation power, available instruction cycles, available memory, etc. Hardware processors may CPUs found in desktops, laptops, tablets, or handheld computing devices. The resulting arrangement may be used for touch or optical user interfaces, real-time image recognition, real-time machine vision, and other purposes.

20 Claims, 7 Drawing Sheets

References Cited

U.S. PATENT DOCUMENTS

5,237,647	A	8/1993	Roberts et al.	
5,270,711	A	12/1993	Knapp	
5,292,999	A	3/1994	Tumura	
5,341,133	A	8/1994	Savoy	
5,347,295	A	9/1994	Agulnick et al.	
5,357,048	A	10/1994	Sgroi	
5,378,850	A	1/1995	Tumura	
5,386,219	A	1/1995	Greanias	
5,420,936	A	5/1995	Fitzpatrick	
5,440,072	A	8/1995	Willis	
5,442,168	A	8/1995	Gurner et al.	
5,459,282	A	10/1995	Willis	
5,471,008	A	11/1995	Fujita et al.	
5,475,214	A	12/1995	DeFranco et al.	
5,565,641	A	10/1996	Gruenbaum	
5,585,588	A	12/1996	Tumura	
5,592,572	A *	1/1997	Le	382/289
5,592,752	A	1/1997	Fu	
5,659,145	A	8/1997	Weil	
5,659,466	A	8/1997	Norris et al.	
5,665,927	A	9/1997	Taki et al.	
5,668,338	A	9/1997	Hewitt et al.	
5,675,100	A	10/1997	Hewlett	
5,717,939	A	2/1998	Bricklin et al.	
5,719,347	A	2/1998	Masubuchi et al.	
5,719,561	A	2/1998	Gonzales	
5,724,985	A	3/1998	Snell	
5,741,993	A	4/1998	Kushimiya	
5,748,184	A	5/1998	Shieh	
5,763,806	A	6/1998	Willis	
5,786,540	A	7/1998	Westlund	
5,801,340	A	9/1998	Peter	
5,805,137	A	9/1998	Yasutake	
5,824,930	A	10/1998	Ura et al.	
5,827,989	A	10/1998	Fay et al.	
5,841,428	A	11/1998	Jaeger et al.	
5,850,051	A	12/1998	Machover et al.	
5,852,251	A	12/1998	Su et al.	
5,889,236	A	3/1999	Gillespie et al.	
5,932,827	A	8/1999	Osborne et al.	
5,969,283	A	10/1999	Looney et al.	
5,977,466	A	11/1999	Muramatsu	
5,986,224	A	11/1999	Kent	
6,005,545	A	12/1999	Nishida et al.	
6,037,937	A	3/2000	Beaton et al.	
6,047,073	A	4/2000	Norris et al.	
6,051,769	A	4/2000	Brown, Jr.	
6,100,461	A	8/2000	Hewitt	
6,107,997	A	8/2000	Ure	
6,140,565	A	10/2000	Yamauchi et al.	
6,204,441	B1	3/2001	Asahi et al.	
6,225,975	B1	5/2001	Furuki et al.	
6,285,358	B1	9/2001	Roberts	
6,288,317	B1	9/2001	Willis	
6,310,279	B1	10/2001	Suzuki et al.	
6,310,610	B1	10/2001	Beaton et al.	
6,320,112	B1	11/2001	Lotze	
6,323,846	B1	11/2001	Westerman et al.	
6,360,019	B1	3/2002	Chaddha	
6,363,159	B1	3/2002	Rhoads	
6,373,475	B1	4/2002	Challis	
6,392,636	B1	5/2002	Ferrari	
6,392,705	B1	5/2002	Chaddha	
6,400,836	B2	6/2002	Senior	
6,404,898	B1	6/2002	Rhoads	
6,408,087	B1	6/2002	Kramer	
6,570,078	B2	5/2003	Ludwig	
6,703,552	B2	3/2004	Haken	
6,793,619	B1	9/2004	Blumental	
7,030,860	B1	4/2006	Hsu et al.	
7,408,108	B2	8/2008	Ludwig	
7,557,797	B2	7/2009	Ludwig	
7,598,949	B2	10/2009	Han	
7,611,409	B2	11/2009	Muir et al.	
8,154,529	B2	4/2012	Sleeman	

8,169,414	B2	5/2012	Lim	
8,170,346	B2	5/2012	Ludwig	
8,179,376	B2	5/2012	Griffin	
8,345,014	B2	1/2013	Lim	
2001/0036299	A1	11/2001	Senior	
2002/0005108	A1	1/2002	Ludwig	
2002/0093491	A1	7/2002	Gillespie et al.	
2004/0074379	A1	4/2004	Ludwig	
2004/0118268	Al	6/2004	Ludwig	
2004/0251402	A1	12/2004	Reime	
2006/0252530	A1	11/2006	Oberberger et al.	
2007/0044019	A1	2/2007	Moon	
2007/0063990	A1	3/2007	Park	
2007/0229477	A1	10/2007	Ludwig	
2008/0010616	A1	1/2008	Algreatly	
2008/0143690	A1	6/2008	Jang	
2008/0164076	A1	7/2008	Orsley	
2008/0259053	A1	10/2008	Newton	
2008/0297482	A1	12/2008	Weiss	
2008/0300055	A1*	12/2008	Lutnick et al.	463/39
2008/0309634	A1	12/2008	Hotelling et al.	
2009/0006292	A1	1/2009	Block	
2009/0027351	A1	1/2009	Zhang et al.	
2009/0124348	A1	5/2009	Yoseloff et al.	
2009/0146968	A1	6/2009	Narita et al.	
2009/0167701	A1	7/2009	Ronkainen	
2009/0254869	A1	10/2009	Ludwig	
2010/0013860	A1	1/2010	Mandella	
2010/0044121	A1	2/2010	Simon	
2010/0060607	A1	3/2010	Ludwig	
2010/0079385	A1	4/2010	Holmgren	
2010/0087241	A1	4/2010	Nguyen et al.	
2010/0090963	A1	4/2010	Dubs	
2010/0110025	A1	5/2010	Lim	
2010/0117978	A1	5/2010	Shirado	
2010/0177118	A1	7/2010	Sytnikov	
2010/0231612	A1	9/2010	Chaudhri et al.	
2010/0232710	A1	9/2010	Ludwig	
2010/0289754	A1	11/2010	Sleeman et al.	
2010/0302172	A1	12/2010	Wilairat	
2010/0328032	A1	12/2010	Rofougaran	
2011/0007000	A1	1/2011	Lim	
2011/0037735	A1	2/2011	Land	
2011/0063251	A1	3/2011	Geaghan	
2011/0086706	A1	4/2011	Zalewski	
2011/0202889	A1	8/2011	Ludwig	
2011/0202934	A1	8/2011	Ludwig	
2011/0260998	A1	10/2011	Ludwig	
2011/0261049	A1	10/2011	Cardno et al.	
2011/0285648	A1	11/2011	Simon et al.	
2012/0007821	A1	1/2012	Zaliva	
2012/0034978	A1	2/2012	Lim	
2012/0056846	A1	3/2012	Zaliva	
2012/0108323	A1	5/2012	Kelly et al.	
2012/0192119	A1	7/2012	Zaliva	
2012/0194461	Al	8/2012	Lim	
2012/0194462	A1	8/2012	Lim	
2012/0195522	A1	8/2012	Ludwig	
2012/0223903	A1	9/2012	Ludwig	
2012/0235940	A1	9/2012	Ludwig	
2012/0262401	A1	10/2012	Rofougaran	
2012/0280927	A1	11/2012	Ludwig	
2012/0317521	A1	12/2012	Ludwig	
2013/0009896	A1	1/2013	Zaliva	
2013/0038554	A1	2/2013	West	

OTHER PUBLICATIONS

Johnson, C., Image Sensor Tracks Moving Objects in Hardware, Electronic Engineering Times, Apr. 5, 1999, 1 pg.
Kaoss Pad Dynamic Effect/Controller, Korg Proview Users' Magazine, Summer 1999, 2 pgs.
Leiberman, David Touch screens extend grasp Into consumer realm Electronic Engineering Times, Feb. 8, 1999.
Lim, W., et al., A Fast Algorithm for Labelling Connected Components in Image Arrays, Technical Report Series No. NA86-2, Thinking Machines Corp., 1986 (rev. 1987), Cambridge, Mass., USA, 17 pgs.

References Cited

OTHER PUBLICATIONS

Pennywitt, K., Robotic Tactile Sensing, Byte, Jan. 1986, 14 pgs. Review of KORG X-230 Drum (later called Wave Drum), Electronic Musician, Apr. 1994, 1 pg.
Rich, R., Buchla Lightning MIDI Controller, Electronic Musician, Oct. 1991, 5 pgs.
Rich, R., Buchla Thunder, Electronic Musician, Aug. 1990, 4 pgs.
Dario P., et al., Tactile sensors and the gripping challenge, IEEE Spectrum, Aug. 1985, 5(22), pp. 46-52.
Snell, J. M., Sensors for Playing Computer Music with Expression, International Computer Music Conference Proceedings, Eastman, 1983, pp. 113-126
Verner, J. A., Starr Switch Company Ztar 624-D, Electronic Musician, Nov. 1994, 5 pgs.
Haken, L., et al., An Indiscrete Music Keyboard, Computer Music Journal, Spring 1998, 22(1), pp. 30-48.
USPTO Notice of Allowance dated May 8, 2013 issued in U.S. Appl. No. 12/541,948, filed Aug. 15, 2009.
Buxton, W.A. S., Two-Handed Document Navigation, XEROX Disclosure Journal, 19(2), Mar//Apr. 1994 [online] URL: http://www. billbuxton com/2Hnavigation.html, pp. 103-108.
USPTO Notice of Allowance dated Mar. 20, 2012 issued in U.S. Appl. No. 12/724,413, filed Mar. 15, 2010.
USPTO Notice of Allowance dated Jan. 10, 2008 issued in U.S. Appl. No. 10/683,914, filed Oct. 10, 2003.
USPTO Notice of Allowance dated Nov. 9, 2012 issued in U.S. Appl. No. 12/502,230, filed Jul. 13, 2009.
USPTO Notice of Allowance dated Mar. 12, 2012 issued in U.S. Appl. No. 12/511,930, filed Jul. 29, 2009.
USPTO Notice of Allowance dated May 16, 2013 issued in U.S. Appl. No. 13/441,842, filed Apr. 7, 2012.
USPTO Notice of Allowance dated May 24, 2013 issued in U.S. Appl. No. 13/442,815, filed Apr. 9, 2012.
USPTO Notice of Allowance dated Dec. 24, 2002 issued in U.S. Appl. No. 09/812,870, filed Mar. 19, 2001.
Principal Component Analysis, [online] [retrieved on Feb. 28, 2011] http://en.wikipedia.org/wiki/Principal_component_analysis, Feb. 25, 2011, 9 pgs.
USPTO Notice of Allowance dated May 30, 2013 issued in U.S. Appl. No. 13/442,806, filed Apr. 9, 2012.
DIY Touchscreen Analysis, MOTO, [online] [retrieved on May 12, 2013]URL: http://labs.moto.com/diy-touchscreen-analysis/, Jul. 15, 2010, 23 pgs.
Wilson, T.V., How the iPhone Works, howstuffworks, [online] [retrieved on May 12, 2013] URL: http://electronics.howstuffworks. com/iphone2.htm, Aug. 2013, 11 pgs.
Walker, G., Touch and the Apple iPhone, Veritas et Visus, [online] [retrieved May 12, 2013] URL: http://www.veritasetvisus.com/ VVTP-12, \%20Walker.pdf, Feb. 2007, 50-54 pgs.
Han, J., Multi-Touch Sensing through LED Matrix Displays (video), [online] [retrieved on May 12, 2013] URL: http://cs.nyu.edu/~jhan/ ledtouch/index.html, Feb. 18, 2011, 1 pg.
Roberts Cross, [online] [retrieved on May 12, 2013] URL: http://en. wikipedia.org/wiki/Roberts_Cross, Jul. 20, 2010, 3 pgs.
Sobel Operator, [online] [retrieved on May 12, 2013] URL: http://en. wikipedia.org/wiki/Sobel_operator, Mar. 12, 2010, 5 pgs.
Prewitt, [online] [retrieved on May 12, 2013] URL: http://en. wikipedia.org/wiki/Prewitt, Mar. 15, 2010, 2 pgs.
Coefficient of Variation, [online] [retreived on May 12, 2013$]$ URL: http://en.wikipedia.org/wiki/Coefficient_of_variation, Feb. 15, 2010, 2 pgs.
Canny Edge Detector, [online] [retrieved on May 12, 2013] URL: http://en.wikipedia.org/wiki/Canny_edge_detector, Mar. 5, 2010, 4 pgs.
Polynomial Regression, [online] [retrieved on May 12, 2013] URL: http://en.wikipedia.org/wiki/Polynomial regression, Jul. 24, 2010, 4pgs.
Pilu, M., et al., Training PDMs on Models: The Case of Deformable Superellipses, Proceedings of the 7th British Machine Vision Conference, Edinburgh, Scotland, 1996, pp. 373-382, [online] [retrieved
on Feb. 28, 2011] URL: https://docs.google.com/viewer $\mathrm{a}=\mathrm{v} \& \mathrm{pid}=$ explorer\&chrome=true\&srcid=
0BxWzm3JBPnPmNDil MDlxZGUtNGZhZi00NzJhLWFhZDMtNTJmYmRiMWYyMjBh\&authkey=CPeVx4wO\&hl=en.
Osian, M. et al., Superellipses to Incomplete Contours, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW '04), Jun. 2004, 8 pgs.
Hough Transform, [online] [retrieved on May 12, 2013] URL: http:// en.wikipedia.org/wiki/Hough_transform, Feb. 13, 2010, 7 pgs.
Tactile Pressure Measurement, Pressure Mapping Systems, and Force Sensors and Measurement Systems, [online] [retrieved on Feb. 3, 2011] URL: http://www.tekscan.com, 2 pgs.
Tactile Surface Pressure and Force Sensors, Sensor Products LLC, Oct. 26, 2006, [online] [retrieved on Aug. 6, 2013] URL: http://www. sensorprod.com, 2 pgs.
Pressure Profile Systems, Jan. 29, 2011, [online] [retrieved on Jan. 29, 2011] http://www.pressureprofile.com, 1 pg .
Xsensor Technology Corporation, [online] [retrieved on May 12, 2013] Feb. 7, 2011 URL: http://www.xsensor.com 1 pg.
Balda AG, Feb. 26, 2011, [online] [retrieved on May 12, 2013] URL: http://www.balda.de, 1 pg.
Cypress Semiconductor, Feb. 28, 2011, [online] [retrieved on May 12, 2013] URL: http://www.cypress.com, 1 pg.
Synaptics, Jan. 28, 2011, [online] [retrieved on May 12, 2013] URL: http://www.synaptics.com, 1 pg.
Venolia, D., et al., T-Cube: A Fast, Self-Disclosing Pen-Based Alphabet, CHI '94 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 24-28,1994, pp. 265-270.
Davis, Richard C., et al., NotePals: Lightweight Note Taking by the Group, for the Group, University of California, Berkeley, Computer Science Division, 1998, 8 pgs.
Rekimoto, J., Pick-and-Drop: A Direct Manipulation Technique for Multiple Computer Environments, Sony Computer Science Laboratory Inc., Tokyo, Japan, 1997, [online] [retrieved on May 30, 2013] URL: http://www.sonycsl.co.jp/person/rekimoto/papers/uist97.pdf, 8 pgs.
Want, R., et al. The ParcTab Ubiquitous Computing Experiment, 1995-1996, [online] [retrieved on Jun. 10, 2013] URL: http://www. ece.rutgers.edu/~parashar/Classes/02-03/ece572/perv-reading/the-parctab-ubiquitous-computing.pdf, 44 pgs.
Dulberg, M. S., et al., An Imprecise Mouse Gesture for the Fast Activation of Controls. IOS Press, Aug. 1999, [online] [retrieved on Jul. 9, 2013] URL: http://www.cse.ncsu.edu/faculty/stamant/papers/ interact.pdf.gz, 10 pgs.
Moyle, M., et al., A Flick in the Right Direction: A Case Study of Gestural Input, Conferences in Research and Practice in Information Technology, vol. 18, Jan. 2005; New Zealand, [online] [retrieved on Jul. 9, 2013] URL: http://www.cosc.canterbury.ac.nz/andrew. cockburn/papers/moyle-cockburn.pdf, 27 pgs.
Maltoni, D., et al., Handbook of Fingerprint Recognition, Springer Professional Computing, 2nd Ed. 2009, XVI, p. 74, p. 361, [online] [retrieved on Jul. 9, 2013] URL: http://books.google.com/ books?id=1Wpx25D8qOwC\&pg=PA361\&lpg=PA361\&dq=
fingerprint+minutiae, 2 pgs.
VeriFinger Information, [online] [retrieved on Jun. 11, 2013] URL: http://www.fingerprint-it.com/_sol_verifinger.html, 2 pgs.
Prabhakar, S., et al., Learning Fingerprint Minutiae Location and Type, Pattern Recognition, 2003, 36, pp. 1847-1857, [online] URL: http://www.cse.msu.edu/biometrics/Publications/Fingerprint/ PrabhakarJainPankanti MinaLocType PR03.pdf.
Garcia Reyes, E., et al., An Automatic Goodness Index to Measure Fingerprint Minutiae Quality, Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science, 3773, 2005, pp. 578-585, [online] [retrieved on Jun. 21, 2013] URL: http://www.researchgate.net/publication/226946511 An Automatic_Goodness_Index_to_Measure_Fingerprint_Minutiae_Quality/file/d912f50ba5e96320d5.pdf.
Kayaoglu, M., et al., Standard Fingerprint Databases: Manual Minutiae Labeling and Matcher Performance Analyses, arXiv preprint arXiv:1305.1443, 2013, 14 pgs, [online] [retrieved on Jun. 2, 2013] URL: http://arxiv.org/ftp/arxiv/papers/1305/1305.1443.pdf.
Alonso-Fernandez, F., et al., Fingerprint Recognition, Chapter 4, Guide to Biometric Reference Systems and Performance Evaluation,

References Cited

OTHER PUBLICATIONS

Springer, London, 2009 pp. 51-90, [online] [retrieved on Jun. 2, 2013] URL: http://www2.hh.se/staff/josef/public/publications/ alonso-fernandez09chapter.pdf.
Image Moment, 2010, 3 pgs, [online] [retrieved on Feb. 28, 2011] URL: http://en.wikipedia.org/wiki/Image_moment.
Nguyen, N., et al., Comparisons of Sequence Labeling Algorithms and Extensions, ICML Proceedings of the 24th International Conference on Machine Learning, 2007, [online] [retrieved on Jun. 2, 2013] URL: http://www.cs.cornell.edu/~nhnguyen/icml07structured.pdf, pp. 681-688
Nissen, S., Implementation of a Fast Artificial Neural Network Library (FANN), Department of Computer Science University of Copenhagen (DIKU) \}, Oct. 31, 2003, [online] [retrieved on Jun. 21, 2013] URL: http://mirror.transact.net.au/sourceforge/f/project/fa/ fann/fann_doc/1.0/fann_doc_complete_1.0.pdf, 92 pgs. Igel, C., et al., Improving the Rprop Learning Algorithm, Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000), 2000, [online] [retrieved on Jun. 2, 2013] URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.3899 \&rep=repl\&type=pdf, pp. 115-121.
Bishop, C. M., Pattern Recognition and Machine Learning, Springer New York, 2006, pp. 561-593.
Euler Angles, 2011, [online] [retrieved on Jun. 30, 2011] URL: http://en.wikipedia.org/w/index.php?title=Euler_angles \&oldid=436460926, 8 pgs.
Electronic Statistics Textbook, StatSoft, Inc., 2011, [online] [retrieved on Jul. 1, 2011] URL: http://www.statsoft.com/textbook, I pg.
Central Moment, 2009, [online] [retrieved on Oct. 26, 2010] URL: http://en.wikipedia.org/w/index.php?title=Central_moment \&oldid=332048374, 2 pgs.
Local Regression, 2011, [online] [retrieved on Jun. 28, 2011] URL: http://en.wikipedia.org/w/index.php?title=Local_regression \&oldid=416762287, 3 pgs.
Hernandez-Leon, R., et al., Classifying Using Specific Rules with High Confidence, 9th Mexican International Conference on Artificial Intelligence, IEEE, Nov. 2010, pp. 75-80.
Fang, Y., et al., Dynamics of a Winner-Take-All Neural Network, Neural Networks, 9(7), Oct. 1996, pp. 1141-1154.

* cited by examiner

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

HIGH-PERFORMANCE CLOSED-FORM SINGLE-SCAN CALCULATION OF OBLONG-SHAPE ROTATION ANGLES FROM IMAGE DATA OF ARBITRARY SIZE AND LOCATION USING RUNNING SUMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/441,842, filed Apr. 7, 2012, which is a continuation of U.S. application Ser. No. 12/724,413, filed on Mar. 15, 2010, now U.S. Pat. No. 8,170,346, issued May 1, 2012, which claims benefit of priority from U.S. Provisional Application No. 61/210,250, filed Mar. 14, 2009, the contents of which are incorporated herein.

FIELD OF THE INVENTION

This invention relates to a method for determining the yaw angle of an oblong shape binary image, and in particular a method for determining the yaw angle using only a single pass of the binary data contained in the image.

DESCRIPTION OF THE RELATED ART

A binary image provided by a proximity sensing system, pressure sensing system, optical sensing system, image processing system, simulation program, etc. may comprise one or more contiguous shapes, these shapes comprising pixels assigned one binary value that are surrounded by a region comprising pixels assigned the opposite binary value.

In some situations, one or more of these contiguous shapes may be oblong in geometric form. This oblong shape may further be oriented in an angular position with respect to coordinate axes of the binary image (for example rows and columns) as suggested in FIGS. $\mathbf{a} \boldsymbol{- 1} c$. An example of such a shape is that of a finger in contact with a proximity, pressure, optical, or other form of user interface touchpad, touch screen, or touch surface. An exemplary arrangement is suggested in FIG. 2. Here the orientation angle, taken with respect to the rows and columns of the image data produced by the touchpad sensor system, corresponds to the rotational yaw angle of the finger with respect to the vertical, horizontal, or other axes-system associated with or imposed on the touchpad sensor system. Such an arrangement is taught, for example, in U.S. Pat. No. 6,570,078.

In an exemplary arrangement pertaining to these and other types of proximity, pressure, optical imaging systems, a sensor array is interfaced to a data acquisition element. In some embodiments pertaining to these and other types of proximity, pressure, optical imaging systems, the data acquisition element may direct addressing, synchronization, stimulus, and/or other types of control signals to the sensor. In other embodiments, the sensor array may provide a stream of data, a data frame similar to an image, or other forms of proximity, pressure, and/or optical image measurement data to the data acquisition element. The data acquisition element provides measurement data to an algorithm executing on a hardware computer processor element. In an exemplary arrangement pertaining to these and other types of proximity, pressure, optical imaging systems, the data acquisition element may comprise an additional algorithm running on the same hardware computer processor element, or another hardware computer processor element. The hardware computer processor element(s) may comprise a CPU as found in a desktop, laptop, tablet, or handheld computing device, and embedded proces-
sor, a signal processor chip, etc. FIG. $\mathbf{3}$ provides an exemplary high-level representation of these concepts. In an embodiment, the production of binary image may include operations such as filtering or statistics-based processing to suppress noise in the measurements, non-operating sensor elements, missing data elements, etc.

The angular orientation, or rotation, with respect to a fixed reference orientation may be calculated in a number of ways. For example, a least squares method may be used to fit a line through the image data, and the slope of the fitted line may be converted to an angle by an inverse tangent or inverse cotangent function. Such an arrangement is taught, for example, in U.S. Pat. No. 6,570,078. Such a system can be advantageous because the least-squares calculation can be organized into a small collection of running sums that can be updated during scanning of the sensor. At the end of a scan, this small collection of running sums is presented to a simple post-scan calculation to determine the best-fit line slope, which as described above is presented to an inverse tangent or inverse cotangent function to recover the angular orientation or rotation. It is noted that the least-squares line fit relies on summing the square distance of deviation from an unknown parameterized line, and the line parameters are then algebraically calculated so as to minimize the sum of the square distance deviations. FIG. 4 depicts an exemplary high-level representation of this type of arrangement.

Another way to calculate angular orientation or rotation with respect to a fixed reference orientation is though use of an eigenvector approach applied to a 2×2 covariance matrix, planar moment of inertia (matrix) tensor, or other 2×2 qua-dratic-form matrix. The covariance matrix, planar moment of inertia (matrix) tensor, and their associated (quadratic form) variants rely on summing the square distance of deviation from a associated centroid (row center and column center).

The eigenvectors of the covariance matrix, planar moment of inertia (matrix) tensor, and other quadratic-form matrices of the like can be interpreted as rotation angles and related to columns of a 2×2 rotation matrix. Such an approach may be found in the pending U.S. patent application Ser. No. 12/541, 948 and elsewhere, for example in U.S. Pat. No. 4,748,676. The angle of a selected eigenvector can be calculated by taking the ratio of the two components of the eigenvector and presenting this ratio to an inverse tangent or inverse cotangent.
There are at least two areas of practical difficulties with the latter approach that are addressed by the present invention. First, finding eigenvectors typically involves a complicated algorithm. The present invention overcomes this by providing a closed-form solution for the components of a selected eigenvector sufficient to determine the angle of rotation. Second, if the calculations are made directly from the definitions, two passes through the data are required: a first pass must be made through the full set of image data in order to first determine the centroid (row center and column center), then a second pass must be made through the full set of image data in order to calculate the square of the distance of separation of a given pixel from the centroid. FIG. 5 shows an exemplary arrangement calling out these practical concerns.

The above attributes of the latter approach has several disadvantages. For example in large images, the data must be stored or a long new scan must be started. Regardless of the image size, should the image data not be stored, a rapid change in the image data from scan to scan can corrupt a calculation that uses the centroid calculated from a previous scan to find the squared separation distance from the centroid calculated in a current scan. The present invention overcomes these and other related problems by decomposing the squared
separation distance calculations in such a way that the centroid is not needed until a post-scan calculation, and the decomposition involves running sums that may be calculated during the same scan used to create the running sums for the row and column centers. In many applications, for example those required to be responsive in user-perceived real-time (such as in user interface applications, real-time image recognition, or real-time machine vision) and/or executing on one or more hardware processors with limited or otherwise constrained computation power, available instruction cycles, available memory, etc., these disadvantages can be significant and preclude practical use of the latter approach. Thus, a more efficient and realistic implementation of yaw angle calculation is desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of the present invention will become more apparent upon consideration of the following description of preferred embodiments taken in conjunction with the accompanying drawing figures, wherein:

FIGS. $\mathbf{1} a-1 \mathbf{c}$ depict exemplary oblong contiguous shapes comprised within a binary image, wherein the shapes may be oriented in an angular position with respect to coordinate axes of the binary image;

FIG. 2 depicts an exemplary arrangement wherein a finger in contact with a proximity, pressure, optical, or other form of user interface touchpad, touch screen, or touch surface'

FIG. 3 provides an exemplary high-level representation of exemplary systems relevant to the present invention;

FIG. 4 depicts an exemplary high-level representation of an exemplary approach for computing an implied yaw angle employing a least-squares line fit and an inverse trigonometric function;

FIG. 5 depicts an exemplary high-level representation of an exemplary approach for computing an implied yaw angle employing an eigenvector of an inertial matrix and an inverse trigonometric function, further calling out problematic implementation concerns and limitations;

FIG. 6 depicts an exemplary representation of the invention comparable to the exemplary arrangement of FIG. 4; and

FIG. 7 depicts an exemplary representation of an embodiment of the invention.

DETAILED DESCRIPTION

In the following description, reference is made to the accompanying drawing figures which form a part hereof, and which show by way of illustration specific embodiments of the invention. It is to be understood by those of ordinary skill in this technological field that other embodiments may be utilized, and structural, electrical, as well as procedural changes may be made without departing from the scope of the present invention.

Thus the present invention provides a scalable high-performance closed-form single-scan calculation of oblong-shape rotation angles from binary images of arbitrary size using running sums. No eigenvector routines are used, and no storage of the image data is required. Only a few running sums are calculated and stored throughout each scan, and the results are obtained in closed form by simple post-scan computation. The resulting arrangement may be implemented in a form such as that depicted in FIG. 6, directly comparable to the exemplary arrangement of FIG. 4 and its aforementioned advantages. This approach additionally can be used or adapted to provide other derived parametric data as well, for
example measures of the oblongness of the oblong-shape via closed-form calculations of the eigenvalues. The resulting system and/or method may be used for touch or optical user interfaces, real-time image recognition, real-time machine vision, and other purposes.

In six-degree-of-freedom rigid motion, the three different degrees of angles for roll, pitch, and yaw are commonly denoted by the symbols ϕ, θ, and ψ. As an envisioned application is recovery of the yaw angle of a finger contact image with a touchpad system, the rotation angle to be calculated by the invention will be denoted ψ.

In the field of analytical mechanics the moment of inertia tensor or matrix is at times regarded as defining the orientation of a solid object in free-space or the plane. The following 2×2 covariance, planar moment of inertia, or other quadraticform matrix is assumed for the algorithm for calculating the moment of inertia to calculate the rotation angle ψ.

$$
\left[\begin{array}{ll}
R R & R C \tag{1}\\
C R & C C
\end{array}\right]
$$

Here "R" denotes "row" and "C" denotes "column," said rows and columns as may be used to organize the scan of an array sensor or an image data set provided by other means or systems. There are several definitions for these terms that involve inclusions or neglect of normalizations and the use minus signs on the off-diagonal terms. These varying definitions end of not affecting the calculations presented herein appreciably, so the simplest definition (no normalization, no off-diagonal negative signs) is provided and commentary offered later as to implications of the various definitions. As will be seen, this simplest definition also offers performance advantages in computation, particularly in real-time systems.

The entries of the matrix as defined above ($\mathrm{RR}, \mathrm{RC}, \mathrm{CR}$, and CC) are cumulative sums obtained by the following:

$$
\begin{align*}
& R R=\Sigma \Sigma\left(r i-r_{0}\right)^{2 *} t h(r i, c i) \tag{2}\\
& R C=\Sigma \Sigma\left(n i-r_{0}\right)\left(c i-c_{0}\right)^{*}+t h(r i, c i) \tag{3}\\
& C R=\Sigma \Sigma\left(c i-c_{0}\right)\left(r i-r_{0}\right)^{*} t h(r i, c i) \tag{4}\\
& C C=\Sigma \Sigma\left(c i-c_{0}\right)^{2} * t(r i, c i) \tag{5}
\end{align*}
$$

The double sums may be calculated over all row and column index combinations in any order. The variable r_{0} denotes the mean row-coordinate of the non-zero pixels (i.e., the geometric row center), and the variable c_{0} denotes the mean column-coordinate of the non-zero pixels (i.e., the geometric column center). The function th(ri,ci) is a binary-valued $\{0,1\}$ function that represents whether a measurement or data value, $p(r i, c i)$ is greater than a specified threshold t. The value of t can be adjusted to suppress the computational impacts of low-level noise in the sensor measurements or other data.

$$
\begin{equation*}
t h(r i, c i)=\mathrm{if}(p(r i, c i) \geq t) \tag{6}
\end{equation*}
$$

For example, an exemplary embodiment would thus during a scan assign measurement or data values exceeding t with the value of 1 , and otherwise assign a value of 0 . Pixel measurements or data whose value of th(ri,ci) is 1 will be referred to as "active pixels" while other pixels will be referred to as "non-active pixels." Multiplying by th(ri,ci) thus excludes terms associated with non-active pixels in the computation of obtaining aggregated sums because for these the value of th(ri,ci) is zero.

The quantity RR contains the value of the sum of the square of the vertical distance from the geometric center, and the
quantity CC contains the value of the sum of the square of the horizontal distance from the geometric column center.

The quantities RC and CR are equivalent and thus interchangeable in subsequent calculation. Each is a cumulative sum of the product of the vertical and horizontal distance from the geometric center.

Note the definition of each of RR, RC, CR, and CC depend on the value of r_{0} and c_{0}. Thus a direct calculation using the literal definition of RR, RC, CR, and CC would appear to require the values of r_{0} and c_{0} to be first calculated in advance. As mentioned earlier, this could require an entire second pass through the image data, but as shown later these may be calculated in the same scan of the data as that for of r_{0} and c_{0} by an innovation of the present invention Obtaining Geometric Row and Column Center

In many embodiments, measurements from each sensor within an array of sensors (or other data) are acquired and values are examined in a specified order. For example, each sensor pixel measurement (or other data) may be selected according to nested increasing row and column indices. In other embodiments, such as those described in U.S. application Ser. No. 12/418,605, a distributed scan may be used and corresponding separate running sums may be combined in a post-scan calculation.

For simplicity, it can be assumed there is a sequential scan of the entire array of sensor array measurements or other image data, and that there is only a single contiguous shape (or region) of active pixels. More complex situations, such as those where there are multiple contiguous regions of active pixels present, can be readily handled by identifying each contiguous region of active pixels and computing a separate isolated set of running sums (to be described) for each such region. Such approaches are discussed in U.S. application Ser. No. 12/418,605.

An exemplary embodiment is now presented for the aforementioned assumed situation of only a single contiguous region of active pixels. As each active pixel is encountered, a counter variable tval gets incremented by 1 . The value of tval will represent the (pixel-count metric of) "area" of the contiguous region of active pixels. At the completion of a scan, the value of the geometric row center may be readily obtained by dividing cumulative sum of row indices of active pixels by the number of active pixels. Similarly, the value of the geometric column center can then be readily obtained by dividing cumulative sum of column indices of active pixels by the number of active pixels.

For example, let the cumulative sum of row and column indices be represented by the following variables:
rsum-the cumulative sum of the row indices of active pixels
csum=the cumulative sum of the column indices of active pixels

An exemplary implementation may be structured as:

```
for(ri=1; ri<=rows; ri++) { // scan each row
    for(ci=1; ci<=cols; ci++) { // scan each column
        if(p(ri,ci)>=t) {
            tval++; // increment tval by 1
            rsum += ri; // increment rsum by ri
            csum+=ci; // increment csum by ci
        };
    };
};
```

Note that in this exemplary programming language implementation, statements for cumulative rsum and csum executed when the if statement is satisfied, ri and ci do not need to be multiplied by the value of th(ri,ci) because when the if statement is satisfied, the value of th(ri,ci) is effectively 1 and when the if statement is not satisfied the sum statements are skipped over (thus equivalent to a value of 0 for th(ri,ci))

At the end of the data array scan the geometric centers of row and column, r_{0} and c_{0}, may be readily calculated in a post-scan calculation using the values of cumulative sum variables above:

$$
\begin{align*}
& r_{0}=\frac{r s u m}{t v a l} \tag{7}\\
& c_{0}=\frac{\text { csum }}{t v a l} \tag{8}
\end{align*}
$$

The values of these variables may be stored for subsequent calculations and/or system output. For example, the values of r_{0} and c_{0} may be output directly as the geometric center of a finger's contact with a touchpad sensor array. The values of tval, rsum and csum may also be stored for subsequent calculations.
In some embodiments one or more of the values of tval, rsum and csum may be used as system output.

Obtaining Entries of the Covariance Matrix

If the definition of RR, RC, and $C C$ is used directly for the calculation, the values of the row geometric center r_{0} and the column geometric center c_{0} obtained above must be used for another scan or pass through the data array. This is because, in the definitions, these expressions depend on the values of geometric centers of rows and columns, r_{0} and c_{0}.

Given the values of geometric centers of rows and columns r_{0} and c_{0}, the values of RR, RC, and CC may be directly calculated from their previously provided definitions

```
RR=\Sigma\Sigma(ri-\mp@subsup{r}{0}{}\mp@subsup{)}{}{2}*th(ri,ci)
RC=CR=\Sigma\Sigma(ri-\mp@subsup{r}{0}{})(ci-\mp@subsup{c}{0}{}\mp@subsup{)}{}{*}th(ri,ci)
CC=\Sigma\Sigma(ci-co )}\mp@subsup{)}{}{2*}th(ri,ci
```

as follows:

```
for \((\mathrm{ri}=1\); ri<=rows; ri++) \{ // scan each row
    for \((\mathrm{ci}=1 ; \mathrm{ci}<=\) cols; ci++) \{ \(/ /\) scan each column
        \(\operatorname{if}(p(r i, c i)>t)\{\quad / /\) if the value of pixel exceeds the
        threshold
            tval++; // increment tval by 1
            \(\mathrm{RR}+=((\mathrm{ri}-\mathrm{rO}) \hat{2} 2) ; \quad / /\) increment RR by \((\mathrm{ri}-\mathrm{rO}) \hat{2}\)
            \(\mathrm{RC}+=(\mathrm{ri}-\mathrm{r} 0)^{*}(\mathrm{ci}-\mathrm{c} 0) ; / /\) increment RC by \((\mathrm{ri}-\mathrm{r} 0)^{*}(\mathrm{ci}-\mathrm{c} 0)\)
            \(\mathrm{CR}+=(\mathrm{ci}-\mathrm{c} 0)^{*}(\mathrm{ri}-\mathrm{r} 0) ; \quad / /\) increment CR by \(\left.(\mathrm{ci}-\mathrm{c} 0)\right)^{*}(\mathrm{ri}-\mathrm{r} 0)\)
            \(\mathrm{CC}+=((\mathrm{ci}-\mathrm{co}) \hat{2}) ; \quad / /\) increment CC by \((\mathrm{ci}-\mathrm{co}) \hat{2}\)
        \};
    \};
\};
```

However, a procedure such as this must be done in a second pass through the image data because the values of geometric centers of rows and columns r_{0} and c_{0} must be known in advance. As mentioned earlier, the present invention provides for expanding the quadratic terms and reorganizing the sums above so that the row geometric center and column geometric center are not needed until a post-scan calculation, and the decomposition involves a small collection of running sums that may be computed along side those needed to calculate the row geometric center and column geometric center. This is described below.

Consolidation into a Single Scan of Binary Data Array
As mentioned above, the need for a second scan or pass through the data array can be eliminated by expanding the quadratic terms involved in the definitions of $R R, R C$, and $C C$. More specifically equations for $R R, R C, C R$, and $C C$ from above

```
\(R R=\Sigma \Sigma\left(r i-r_{0}\right)^{2}{ }^{2} t h(r i, c i)\)
\(R C=C R=\Sigma \Sigma\left(r i-r_{0}\right)\left(c i-c_{0}\right)^{*} t h(r i, c i)\)
\(C C=\Sigma \Sigma\left(c i-c_{0}\right)^{2 *} t h(r i, c i)\)
```

can be expanded as follows:

$$
\begin{align*}
& R R=\left(\Sigma \Sigma h^{2 *} t h(n i, c i)\right)-\left(22^{*} r_{0}^{*} \Sigma \Sigma i^{*} t h(n i, c i)\right)+\left(r_{0}^{2 * \Sigma} t h\right. \\
& \quad(r i, c i)) \\
& R C=C R=\left(\Sigma \Sigma r i^{*} c i * t h(r i, c i)\right)-\left(c_{0}^{*} \Sigma \Sigma r i^{*} t h(r i, c i)\right)- \\
& \quad\left(r_{0}^{*} \Sigma \Sigma c i^{*} t h(r i, c i)\right)+\left(r_{0}^{*} c_{0}^{*} \Sigma t h(r i, c i)\right) \tag{16}\\
& C C\left(\Sigma c i^{2 *} t h(r i, c i)\right)-\left(2^{*} c_{0} * \Sigma c i^{*} t h(r i, c i)\right)+\left(c_{0}^{2 *} \Sigma t h(r i,\right. \\
& \quad c i)) \tag{17}
\end{align*}
$$

In the above equations, some of the terms that depend on the value of r_{0} and c_{0} can be replaced with other terms, and r_{0} and c_{0} are no longer needed. Specifically:
$\Sigma \operatorname{th}($ ri,ci $)$ is equivalent to tval
$\Sigma\left(\mathrm{ri}^{*}\right.$ th(ri,ci)) is equivalent to $\mathrm{r}_{0}{ }^{*}$ tval
$\Sigma\left(\mathrm{ci}^{*} \operatorname{th}(\mathrm{ri}, \mathrm{ci})\right)$ is equivalent to $\mathrm{c}_{\mathrm{o}}{ }^{*}$ tval

$$
\begin{aligned}
& r_{0} \text { is equivalent to } \frac{r v a l}{t v a l} \\
& c_{0} \text { is equivalent to } \frac{c v a l}{t v a l} .
\end{aligned}
$$

In an exemplary programming language embodiment, three new running sum variables, rrval, ccval, and reval, may be introduced.
rrval=cumulative sum of the square of row indices of active pixels;
ccval=cumulative sum of the square of column indices of active pixels;
reval=cumulative sum of the product of row and column indices of active pixels.

These running sums can be included in the first scan loop where the cumulative sum of the row indices (earlier called rsum, but renamed rval as used and clearly seen in the exemplary algorithm below) and column indices (earlier csum, but renamed cval as used and clearly seen in the exemplary algorithm below) are calculated. The result requires six running variables used in the scan:
tval
rval
cval
rrval
ccval
reval
The covariance matrix can then be calculated in a post-scan calculation. Note the variables, r_{0} and c_{0}, are replaced with

$$
\frac{\mathrm{rval}}{\mathrm{tval}} \text { and } \frac{\mathrm{cval}}{\mathrm{tval}}
$$

in the expansions.

$$
\begin{align*}
& R R=\left(\sum \sum r i^{2} * t h(r i, c i)\right)- \\
& \left(2 * \frac{r v a l}{\text { tval }} \sum \sum r i * t h(r i, c i)\right)+\left[\frac{r v a l}{\text { tval }}\right]^{2} * t v a l
\end{align*} \begin{array}{r}
R C=C R=\left(\sum \sum r i * c i * t h(r i, c i)\right)-\left(\frac{c v a l}{\text { tval }} \sum \sum r i * t h(r i, c i)\right)- \\
\left(\frac{r v a l}{\text { tval }} \sum \sum c i * t h(r i, c i)\right)+\left(\frac{r v a l}{t v a l} * \frac{c v a l}{\text { tval }}\right) * t v a l
\end{array} \begin{array}{r}
C C=\left(\sum \sum c i^{2} * t h(r i, c i)\right)- \tag{19}\\
\left(2 * \frac{c v a l}{t v a l} \sum \sum c i * t h(r i, c i)\right)+\left[\frac{c v a l}{t v a l}\right]^{2} * t v a l \tag{20}
\end{array}
$$

for(ri=1; ri<=rows; ri++) \{	// scan each row
for($\mathrm{ci}=1 ; \mathrm{ci}<=\mathrm{cols} ; \mathrm{ci}++)$ \{	// scan each column
$\mathrm{if}(\mathrm{p}(\mathrm{ri}, \mathrm{ci})>=\mathrm{t})$ \{	// if the value of pixel exceeds the threshold
tval++;	// increment tval by 1
rrval+=ri*ri;	// increment rrval by ri 2
rval+=ri;	// increment rval by ri
ccval+=ci*ci;	// increment ceval by ci 2
cval+=ci;	// increment cval by ci
reval+=ri**i;	// increment reval by ri*ci
\};	
\};	// end the scanning loop

$\mathrm{RR}=\mathrm{rrval}-2^{*}(\mathrm{rval} / \mathrm{tval})^{*}{ }^{*} \mathrm{val}+(\mathrm{rval} / \mathrm{tval}){ }^{2} 2^{*}$ tval; $\mathrm{RC}=($ rcvalal/tval)*rval+(rval/tval)* cval $+($ rval/tval)* (cval/tval)*tval;
$\mathrm{CC}=\mathrm{ccval}-2^{*}(\mathrm{cval} / \mathrm{tval})^{*} \mathrm{cval}+(\mathrm{cval} / \mathrm{tval})^{n} 2^{*}$ tval;

Additionally, the above equations and programming language embodiments can be further simplified in a number of ways. For example:

$$
\begin{align*}
& {\left[\frac{\mathrm{rval}}{\mathrm{tval}}\right]^{2} * t v a l=\left[\frac{\mathrm{rval}}{}{ }^{\mathrm{tval}}\right]} \tag{21}\\
& {\left[\frac{\mathrm{cval}}{\mathrm{tval}}\right]^{2} * t v a l=\left[\frac{\mathrm{cval}}{\mathrm{tval}}\right]} \tag{22}\\
& \left(\frac{\mathrm{rval}}{\mathrm{tval}} * \frac{\mathrm{cval}}{\text { tval }}\right) * \text { tval }=\left(\frac{r v a l * c v a l}{\mathrm{tval}}\right) \tag{23}\\
& \text { and }
\end{align*}
$$

$$
\begin{align*}
& \sum(r i * t h(r i, c i))=r_{0} * t v a l=\frac{r v a l}{t v a l} * t v a l=r v a l \tag{24}\\
& \sum(c i * t h(r i, c i))=c_{0} * t v a l=\frac{c v a l}{t v a l} * t v a l=c v a l \tag{25}
\end{align*}
$$

Such corresponding simplifying substitutions may be advantageously made in programming language embodiments, reducing the computational complexity and potentially reducing the introduction of numerical error.

Applying these simplifications to the three statements of the exemplary post-scan computation

$$
\begin{align*}
& R R=r v v a l-2 * \frac{r v a l}{t v a l} * r v a l+\left(\frac{r v a l}{t v a l}\right)^{2} * t v a l \tag{26}\\
& R C=r c v a l-\frac{c v a l}{t v a l} * r v a l+\frac{r v a l}{t v a l} * c v a l+\frac{r v a l}{t v a l} * \frac{c v a l}{t v a l} * t v a l \tag{27}\\
& C C=c c v a l-2 * \frac{c v a l}{t v a l} * c v a l+\left(\frac{c v a l}{t v a l}\right)^{2} * t v a l \tag{28}
\end{align*}
$$

yields the simplification to the post-scan calculation:

$$
\begin{align*}
& R R=r v v a l-\frac{r v a l^{2}}{t v a l} \tag{29}\\
& R C=r c v a l-c v a l * \frac{r v a l}{t v a l} \tag{30}\\
& C C=c c v a l-\frac{c v a l^{2}}{t v a l} \tag{31}
\end{align*}
$$

For the RR and CC terms, it may appear surprising that the cross-product term and a square-term would evaluate in such a way as to partially cancel out and subsequently results in the difference between two square terms. However, on occasion this phenomena shows up in classical mathematic analysis, so it should not be disconcerting to one skilled in the art. Specifically it is an inventive step of the present invention to structure the mathematics in such a way as to make this cancellation possible and leverage it in an advantageous computation. As a bonus, the RC term also enjoys a similar simplification.
Closed-Form Expression for the Rotation Angle
Using the above, a covariance matrix, planar moment of inertia (matrix) tensor, or related 2×2 quadratic form matrix can be obtained in a simple single scan without requiring storage of the image but rather the storage of only six running sums.

As mentioned in the Introduction, the eigenvectors of the covariance matrix, planar moment of inertia (matrix) tensor, or other quadratic-form matrix of the like can be interpreted as depicting a set of rotated orthogonal coordinates. The angle between these rotated coordinates and the original reference coordinates can be associated with a rotation angle of the oblong active region's shape. In one interpretation, one of the eigenvectors may be used to define the angle. In another interpretation, the two-dimensional eigenvectors of the 2×2 covariance matrix may be related to columns of a 2×2 rotation matrix. In either case, the angle of a selected eigenvector can be calculated by taking the ratio of the two components of the eigenvector and presenting this ration to an inverse tangent or inverse cotangent. This calculated angle can be related to the rotation angle of the oblong active region's shape. Further, the way the angle is calculated (what ratio to take of elements of what eigenvector, whether inverse tangent or inverse cotangent is used, etc.) can directly incorporate the imposed interpretation of the rotation angle of the oblong active region's shape.

However, as mentioned in the introduction, in general finding eigenvectors involves a complicated algorithm. The present invention overcomes this by providing a closed-form solution for the components of a selected eigenvector sufficient to determine the angle of rotation. A closed form solution can be calculated because the 2×2 eigenvector and eigenvalue problem involves the roots of a simple quadratic equation. The well-known quadratic formula provides a closed-form expression for the roots of a simple quadratic
can be readily shown through simple use of the quadratic formula to have the eigenvalues of

$$
\begin{align*}
& \frac{\left(a+d+\sqrt{a^{2}+4 b c-2 a d+d^{2}}\right)}{2} \tag{3}\\
& \frac{\left(a+d-\sqrt{a^{2}+4 b c-2 a d+d^{2}}\right)}{2} \tag{34}
\end{align*}
$$

For cases where c is non-zero, these eigenvalues can be used to calculate a closed-form representation of the eigenvectors. The eigenvectors may be normalized in a variety of ways, for example as

$$
\begin{align*}
& \left\{\frac{\left(a-d+\sqrt{a^{2}+4 b c-2 a d+d^{2}}\right)}{2 c}, 1\right\} \tag{35}\\
& \left\{\frac{\left(a-d-\sqrt{a^{2}+4 b c-2 a d+d^{2}}\right)}{2 c}, 1\right\} \tag{36}
\end{align*}
$$ cross-product term is zero, it can be readily seen that this corresponds to zero values of the off-diagonal elements of the quadratic-form (covariance, planar moment of inertia, etc.) matrix which have a straightforward geometric interpretation. In this way the rotation angle can be directly calculated from the entries of the quadratic form matrix without an eigensystem (eigenvector and eigenvalue) algorithm.

Specifically the matrix

$$
\left[\begin{array}{ll}
a & b \tag{32}\\
c & d
\end{array}\right]
$$

Or by multiplying the eigenvectors above through by a factor of 2 c , as

$$
\begin{align*}
& \left\{\left(a-d+\sqrt{a^{2}+4 b c-2 a d+d^{2}}\right), 2 c\right\} \tag{37}\\
& \left\{\left(a-d-\sqrt{a^{2}+4 b c-2 a d+d^{2}}\right), 2 c\right\} \tag{38}
\end{align*}
$$

The former representation, to the extent it can be directly calculated (rather than from a conversion of the latter representation), is advantageous in that the first element of each eigenvector is the same as the ratio of the first and second elements of the eigenvector (since the denominator of the ratio is 1).
A covariance matrix form requires $\mathrm{c}=\mathrm{b}$, so the above more general eigenvectors simplify to

$$
\begin{align*}
& \left\{\frac{\left(a-d+\sqrt{a^{2}+4 b^{2}-2 a d+d^{2}}\right)}{2 b}, 1\right\} \tag{39}\\
& \left\{\frac{\left(a-d-\sqrt{a^{2}+4 b^{2}-2 a d+d^{2}}\right)}{2 b}, 1\right\} \tag{40}
\end{align*}
$$

equation as long as the coefficient of the cross-product term is non-zero. For cases where the coefficient of the cross-product term is non-zero, then, the eigenvectors and eigenvalues can be found in closed form. For cases where the coefficient of the

As to the inclusion or disregard for normalization in various definitions of the covariance or inertia matrix, clearly
multiplying through all terms a, b, d with a normalization factor would simply cancel out in the above eigenvector expressions. It is noted that the eigenvalues would be scaled, but they are not used for the angle calculations to follow. By using a definition without normalization, many extra computation steps that do not add value can be avoided, improving real-time performance and reducing the amount of stored code.

Further, as to the inclusion of minus signs on the two off-diagonal elements of the covariance or inertia matrix called for in some definitions, review of the above calculations show this to reverse the sign of the angle that would be associated with the eigenvector. The sense of angle direction definition is an engineering design choice in the calculations and may be readily compensated for or handled in other ways to produce the desired computed outcome. By using a definition without off-diagonal minus signs, extra computation steps that do not add value can be avoided, further improving real-time performance and reducing the amount of stored code.
(By way of comparison, a rotation matrix form requires $\mathrm{c}=-\mathrm{b}$, so here the more general eigenvectors simplify to

$$
\begin{align*}
& \left\{\frac{\left(d-a+\sqrt{a^{2}-4 b^{2}-2 a d+d^{2}}\right)}{2 b}, 1\right\} \tag{41}\\
& \left\{\frac{\left(d-a-\sqrt{a^{2}-4 b^{2}-2 a d+d^{2}}\right)}{2 b}, 1\right\} \tag{42}
\end{align*}
$$

The values of RR, RC, and CC can be substituted for a, b, and d respectively to obtain a first eigenvector of the covariance matrix as

$$
\begin{equation*}
\left\{\frac{R R-C C+\sqrt{R R^{2}+4 * C C^{2}-2 * R R * C C+C C^{2}}}{2 R C}, 1\right\} \tag{43}
\end{equation*}
$$

and a first eigenvector of the rotation matrix as

$$
\left\{\frac{C C-R R+\sqrt{R R^{2}-4 * C C^{2}-2 * R R * C C+C C^{2}}}{2 R C}, 1\right\}
$$

a slightly different result.)

The covariance (or, if applicable, rotation) matrix eigenvectors can be then operated upon by inverse tangent or inverse cotangent operations to obtain angles with various zero-angle orientations and positive-negative signs affiliated to clockwise and counter-clockwise angle directions. For example, to obtain a rotation angle ψ so that a zero-valued angle is associated with the oblong elongation oriented vertically and a positive angle value rotating clockwise, the following expression may be used where RC is non-zero:

$$
\begin{equation*}
\psi=\operatorname{ArcCot}\left[\frac{R R-C C+\sqrt{R R^{2}+4 * C C^{2}-2 * R R * C C+C C^{2}}}{2 R C}\right] \tag{45}
\end{equation*}
$$

When RC is zero, the above expression become numerically undefined but may be interpreted analytically as having a (positive or negative) infinite value. The inverse cotangent

If art.
function maps infinite value arguments to a zero angle, so a conditional "If-Then-Else" expression can be used to provide smooth handling of the rotation calculation between rotational angle values within the range of positive or negative 90 degrees:
$\left[b!=0, \psi=\operatorname{ArcCot}\left[\frac{R R-C C+}{2 R C}\left[\frac{\sqrt{R R^{2}+4 * C C^{2}-2 * R R * C C+C C^{2}}}{2 R}\right], \psi=0\right]\right.$

The conditional expression can be expanded further to handle cases where the rotation angle is effectively 90 degrees, for example:

If $\left.\left[\begin{array}{l}b!=0, \psi=\operatorname{ArcCot}\left[\frac{\sqrt{R R-C C+}}{R R^{2}+4 * C C^{2}-2 * R R * C C+C C^{2}}\right. \\ 2 R C\end{array}\right],\right]$
where the value of r_{0} is greater than c_{0}, the value of ψ will be set to

$$
\frac{\pi}{2}
$$

This can be coded, for example, as follows.

$\mathrm{if}(\mathrm{RC}!=0) \quad / /$ if RC is not equal to zero angle $=\operatorname{ArcCot}($ RR-CC $+\operatorname{sqrt}(\mathrm{RR} 2+$	
$4^{*}(\mathrm{RC} 2)-2{ }^{*} \mathrm{R}^{*} \mathrm{CC}+(\mathrm{CC} 2) /(2 * \mathrm{RC})$);	
else if ($\mathrm{RR}>=C \mathrm{C}$)	// if RC is equal to zero and if $\mathrm{RR}>=\mathrm{CC}$
angle $=0$;	// then the angle is zero
else	
angle $=\mathrm{PL} / 2$;	// otherwise the angle is $\mathrm{PI} / 2$

In general, to handle and distinguish the positive 90 degree rotation angle and negative 90 degree rotation angle additional information is needed. Such additional information may include, for example, information from pattern recognition functions, state information from angle-variation tracking, etc.

When used with low-power and/or otherwise busy processors (for example in small hand-held devices such as cellphones, PDAs, game controllers, remote controls, etc.), as well as with restricted word-size arithmetic (for example 8 -bit), it can be advantageous to replace an actual inverse tangent or inverse cotangent function with a pre-computed table-look-up function as is understood by one skilled in the

As indicated above, this approach can be used to provide other derived parametric data such as measures of the oblongness of the oblong-shape via closed-form calculations of the eigenvalues. If the ratio of the eigenvalues is 1 , the shape is a (non-oblong) circle. The farther the ratio of the eigenvalues is from the value of 1 , the more oblong the shape.

As the eigenvectors for the covariance matrix (with $c=b$) are

$$
\begin{align*}
& \frac{\left(a+d-\sqrt{a^{2}+4 b^{2}-2 a d+d^{2}}\right)}{2} \tag{48}\\
& \frac{\left(a+d-\sqrt{a^{2}+4 c^{2}-2 a d+d^{2}}\right)}{2} \tag{49}
\end{align*}
$$

$$
\text { oblongness }=\frac{a+d+\sqrt{a^{2}+4 b^{2}-2 a d+d^{2}}}{a+d-\sqrt{a^{2}+4 b^{2}-2 a d+d^{2}}}
$$

The variables a, b, and d can be replaced with $R R, R C$, and CC as before to include as part of the post-scan algorithm described earlier.

Note that as this oblongness measure is a ratio of the eigenvalues, any scaling applied equally to both of the eigenvalues will cancel out. As a result, like the angle calculation, this oblongness measure is not affected by whether normalization is used or not in the definition of the covariance matrix.

Similarly, as the oblongness measure depends on the square of the $B(b=R C)$ term, any off-diagonal minus signs which may or may not be used in the definition of the covariance matrix have no effect.
(By way of comparison, the eigenvectors for the rotation matrix (with $c=-b$) are

$$
\begin{align*}
& \frac{a+d+\sqrt{a^{2}-4 b^{2}-2 a d+d^{2}}}{2} \tag{51}\\
& \frac{a+d-\sqrt{a^{2}-4 b^{2}-2 a d+d^{2}}}{2} \tag{52}
\end{align*}
$$

another exemplary closed-form expression for a (ratio of the eigenvalues) measure of oblongness of the shape is:

$$
\begin{equation*}
\text { oblongness }=\frac{a+d+\sqrt{a^{2}-4 b^{2}-2 a d+d^{2}}}{a+d-\sqrt{a^{2}-4 b^{2}-2 a d+d^{2}}} \tag{53}
\end{equation*}
$$ invention results in a scalable high-performance closed-form single-scan calculation of oblong-shape rotation angles from binary images of arbitrary size using running sums. No eigenvector routines are used, and no storage of the image data is required. Only six running sums are calculated and stored throughout each scan, and the results are obtained in closed form by simple post-scan computation. This approach can be used to provide other derived parametric data as well, for example measures of the oblongness of the oblong-shape via closed-form calculations of the eigenvalues. An exemplary implementation is suggested in FIG. 7. An exemplary programming language embodiment is provided below:

```
for(ri=1; ri<=rows; ri++) {
    for(ci=1; ci<=cols; ci++) {
        if(p(ri,ci)>=t) {
            tval++;
            rrval+=ri*ri;
            rval+=ri;
            ceval+=ci*ci;
            cval+=ci;
            rcval+=ri*ci;
        };
    };
        Rcenter = rval/tval;
        Ccenter = cval/tval;
RR=rrval - (rval^2)/tval;
            RC=reval - (cval*rval/tval);
            CC=ccval - (cval 2)/tval;
    if(RC!=0)
        angle= }\operatorname{ArcCot((RR-CC+sqrt(R2- 2+4*(RC)
            2*RR*CC+(CC*2)/(2*RC);
else if (RR>=CC)
                                    // if RC is equal to zero and if
                                    RR>=CC
angle=0;
else
angle=PI/2;
                            // then the angle is zero
                                    // otherwise the angle is PI/2
                                    // angle result for output
``` , the image of the oblong shape comprising thresholded pixels within image data, wherein each thresholded pixel is a scalar measurement comprising a numerical value exceeding a threshold, the method comprising:
determining a cumulative sum of the square of row indices of thresholded pixels, wherein an thresholded pixel is defined as a measurement data element within the binary-valued image data having a specified binary numerical value;
determining a cumulative sum of the square of column indices of thresholded pixels; determining a cumulative sum of the product of row and column indices of thresholded pixels;
determining a value according to a closed form algebraic formula comprising the cumulative sum of the square of row indices, the cumulative sum of the square of column indices, and the cumulative sum of the product of row and column indices;
determining the computed orientation angle of the oblong shape of binary-valued image data according to the value using an inverse trigonometric function operation; and
providing the computed orientation angle as an output.
2. The method of claim 1 wherein the additional software provides a user interface function.
3. The method of claim 2 wherein the computed orientation angle is used as a user interface quantity for controlling at least one aspect of a computer application.
4. The method of claim \(\mathbf{1}\) wherein the image data is produced from measurement data provided by a tactile sensor array.
5. The method of claim 4 wherein the tactile sensor array comprises a tactile proximity sensor.
6. The method of claim 4 wherein the tactile sensor array comprises a tactile pressure sensor.
7. The method of claim 4 wherein the image data is produced at least in part responsive to contact of a human hand with the tactile sensor array.
8. The method of claim 4 wherein the image data is produced by an optical sensing system.
9. The method of claim 1 wherein the inverse trigonometric function operation comprises an inverse cotangent function.
10. The method of claim 1 wherein the processor comprises an embedded controller.
11. A computer implemented data processing system comprising: a memory that stores image data; and a processor in communication with the memory that:
receives the image data, the image data comprising an array of pixels having rows and columns wherein each row and column has a unique associated index value, and each pixel having has a unique row index value and column index value wherein each pixel further comprises a scalar measurement, the image data comprising a subset of pixels having values above a threshold value that are arranged in an oblong shape within the image data;
perform threshold operations on each pixel of the image data to produce binary image data to generate the oblong shape;
computes the geometric center of the oblong shape, the geometric center comprising a row center value and a column center value;
defines a corresponding centered row index value by subtracting the row center value from the row index value for each row index value;
defines a corresponding centered column index value by subtracting the column center value from the column index value for each column index value;
computes a first cumulative sum of the square of centered row index values of the subset of pixels having values above the threshold value, second cumulative sum of the square of centered column index values of the subset of pixels having values above the threshold value, and a third cumulative sum of the product of centered row index values and centered column index values of the subset of pixels having values above the threshold value;
computes one or more numerical quantities within a closed form algebraic formula for a ratio of two terms of an inertial matrix defined by the binary-valued image data using each of first, second, and third cumulative sums;
transforms the ratio into a calculated numerical angle value using an inverse trigonometric function operation; and
provides the calculated numerical angle value as an output.
12. The system of claim 11 wherein the additional software provides a user interface function.
13. The system of claim \(\mathbf{1 2}\) wherein the calculated numerical angle value is used as a user interface quantity for controlling at least one aspect of a computer application.
14. The system of claim 11 wherein the image data is produced from measurement data provided by a tactile sensor array.
15. The system of claim 14 wherein the tactile sensor array comprises a tactile proximity sensor.
16. The system of claim 14 wherein the tactile sensor array comprises a tactile pressure sensor.
17. The system of claim 14 wherein the image data is produced at least in part responsive to contact of a human hand with said tactile sensor array.
18. The system of claim 14 wherein the image data is produced by an optical sensing system.
19. The system of claim 11 wherein the inverse trigonometric function operation comprises an inverse cotangent function.
20. The system of claim \(\mathbf{1 1}\) wherein the processor comprises an embedded controller.```

