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SENSOR ARRAY TOUCHSCREEN
RECOGNIZING FINGER FLICK GESTURE
FROM SPATIAL PRESSURE DISTRIBUTION
PROFILES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 11/761,978, filed Jun. 12, 2007, which is a continuation
of U.S. application Ser. No. 09/812,400, filed Mar. 19, 2001,
now U.S. Pat. No. 7,786,370, issued Aug. 31, 2010, which is
a division of U.S. application Ser. No. 09/313,533, filed May
15,1999, now U.S. Pat. No. 6,610,917, issued Aug. 26, 2003,
which claims the benefit of priority of U.S. Provisional Appli-
cation No. 60/085,713, filed May 15, 1998.

FIELD OF INVENTION

The present invention relates generally to a control system,
and in particular, to a tactile input controller for controlling an
associated system.

SUMMARY OF THE INVENTION

Touchpad user interfaces for controlling external systems
such as computers, machinery, and process environments via
at least three independent control signals. The touchpad may
be operated by hand, other parts of the body, or inanimate
objects. Such an interface affords a wide range of uses in
computer applications, machine and process control, and
assistance to the disabled. In one embodiment simple contact
position-sensing touchpads, producing control signals
responsive to a contact region, are enhanced to provide sev-
eral independent control signals. Enhancements may include
velocity sensors, pressure sensors, and electronic configura-
tions measuring contact region widths. Touch-screens posi-
tioned over visual displays may be adapted. According to
other aspects pressure-sensor array touchpads are combined
with image processing to responsively calculate parameters
from contact regions. Six independent control parameters can
be derived from each region of contact. These may be easily
manipulated by a user. In one implementation, smaller pres-
sure-sensor arrays are combined with data acquisition and
processing into a chip that can be tiled in an array.

DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of the
present invention will become more apparent upon consider-
ation of the following description of preferred embodiments
taken in conjunction with the accompanying drawing figures,
wherein:

FIG. 1 shows an example of how two independent contact
points can be independently discerned, or the dimensional-
width of a single contact point can be discerned, for a resis-
tance null/contact controller with a single conductive contact
plate or wire and one or more resistive elements whose resis-
tance per unit length is a fixed constant through each resistive
element;

FIG. 2 shows how a pressure-sensor array touch-pad can be
combined with image processing to assign parameterized
interpretations to measured pressure gradients and output
those parameters as control signals;

FIG. 3 illustrates the positioning and networking of pres-
sure sensing and processing “mini-array” chips in larger con-
tiguous structures;
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FIG. 4 illustrates the pressure profiles for a number of
example hand contacts with a pressure-sensor array;

FIG. 5 illustrates how six degrees of freedom can be recov-
ered from the contact of a single finger; and

FIG. 6 illustrates examples of single, double, and qua-
druple touch-pad instruments with pads of various sizes and
supplemental instrument elements.

FIG. 7 illustrates an example implementation involving
dynamically assigned labels.

DETAILED DESCRIPTION
Overview

Described herein are two kinds of novel touch-pads. Null/
contact touchpads are contact-position sensing devices that
normally are in a null state unless touched and produce a
control signal when touched whose signal value corresponds
to typically one unique position on the touch-pad. A first
enhancement is the addition of velocity and/or pressure sens-
ing. A second enhancement is the ability to either discern each
dimensional-width of a single contact area or, alternatively,
independently discern two independent contact points in cer-
tain types of null/contact controllers. A third possible
enhancement is that of employing a touch-screen instance of
null/contact touch pad and positioning it over a video display.

The invention also provides for a pressure-sensor array
touch-pad. A pressure-sensor array touch-pad of appropriate
sensitivity range, appropriate “pixel” resolution, and appro-
priate physical size is capable of measuring pressure gradi-
ents of many parts of the human hand or foot simultaneously.
A pressure-sensor array touch-pad can be combined with
image processing to assign parameterized interpretations to
measured pressure gradients and output those parameters as
control signals. The pressure-sensor “pixels” of a pressure-
sensor array are interfaced to a data acquisition stage; the data
acquisition state looks for sensor pixel pressure measurement
values that exceed a low-level noise-rejection/deformity-re-
ject threshold; contiguous regions of sufficiently high pres-
sure values are defined; the full collection of region bound-
aries are subjected to classification tests; various parameters
are derived from each independent region; and these param-
eters are assigned to the role of specific control signals which
are then output to a signal routing, processing, and synthesis
entity.

It is possible to derive a very large number of independent
control parameters which are easily manipulated by the oper-
ating user. For example, six degrees of freedom can be recov-
ered from the contact of a single finger. A whole hand posture
can yield 17 instantaneously and simultaneously measurable
parameters which are independently adjustable per hand. The
recognized existence and/or derived parameters from pos-
tures and gestures may be assigned to specific outgoing con-
trol signal formats and ranges. The hand is used throughout as
an example, but it is understood that the foot or even other
body regions, animal regions, objects, or physical phenomena
can replace the role of the hand.

It will be evident to one of ordinary skill in the art that it is
advantageous to have large numbers of instantaneously and
simultaneously measurable parameters which are indepen-
dently adjustable. For instance, a symbol in a 2-D CAD
drawing can be richly interactively selected and installed or
edited in moments as opposed to tens to hundreds of seconds
as is required by mouse manipulation of parameters one or
two at a time and the necessary mode-changes needed to
change the mouse action interpretation. As a result, said
touch-pad has applications in computer workstation control,
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general real-time machine control, computer data entry, and
computer simulation environments.

Various hardware implementations are possible. A particu-
larly advantageous implementation would be to implement a
small pressure-sensor array together with data acquisition
and a small processor into a single chip package that can be
laid as tiles in a larger array.

Null/Contact Touch-Pads

Distinguished from panel controls and sensors are what
will be termed null/contact touch-pads. This is a class of
contact-position sensing devices that normally are in a null
state unless touched and produce a control signal when
touched whose signal value corresponds to typically one
unique position on the touch-pad. Internal position sensing
mechanisms may be resistive, capacitive, optical, standing
wave, etc. Examples of these devices include one-dimen-
sional-sensing ribbon controllers found on early music syn-
thesizers, two-dimensional-sensing pads such as the early
Kawala pad and more modern mini-pads found on some
lap-top computers, and two-dimensional-sensing see-
through touch-screens often employed in public computer
kiosks.

The null condition, when the pad is untouched, requires
and/or provides the opportunity for special handling. Some
example ways to handle the untouched condition include:

sample-hold (hold values issued last time sensor was

touched, as does a joystick)

bias 1107a, 11075 (issue maximal-range value, minimal-

range value, mid-range value, or other value)
touch-detect on another channel (i.e., a separate out-of-
band “gate” channel).

Additional enhancements can be added to the adaptation of
null/contact touch-pad controllers as instrument elements. A
first enhancement is the addition of velocity and/or pressure
sensing. This can be done via global impact and/or pressure-
sensors. An extreme of this is implementation of the null/
contact touch-pad controller as a pressure-sensor array; this
special case and its many possibilities are described later.

A second enhancement is the ability to either discern each
dimensional-width of a single contact area or, alternatively,
independently discern two independent contact points in cer-
tain types of null/contact controllers. FIG. 1 shows an
example of how two independent contact points can be inde-
pendently discerned, or the dimensional-width of a single
contact point can be discerned, for a resistance null/contact
controller with a single conductive contact plate (as with the
Kawala pad product) or wire (as in a some types of ribbon
controller products) and one or more resistive elements 1100
whose resistance per unit length is a fixed constant through
each resistive element. It is understood that a one-dimen-
sional null/contact touch-pad typically has one such resistive
element while a two-dimensional null/contact touch-pad
typically has two such resistive elements that operate inde-
pendently in each direction.

Referring to FIG. 1, a constant current source 1101 can be
applied to the resistive element as a whole 11024-11025,
developing a fixed voltage across the entire resistive element
1100. When any portion of the resistive element is contacted
by either a non-trivial contiguous width and/or multiple
points of contact 1104-1105, part of the resistive element is
shorted out 1100, thus reducing the overall width-to-end
resistance of the resistance element. Because of the constant
current source 1101, the voltage developed across the entire
resistive element 11024¢-11025 drops by an amount equal to
the portion of the resistance that is shorted out.

The value of the voltage drop then equals a value in pro-
portion to the distance separating the extremes of the wide
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and/or multiple contact points 1104-1105. By subtracting
1111, 1112, 1113 the actual voltage across the entire resistive
element from the value this voltage is normally 1110, a con-
trol voltage proportional to distance separating the extremes
of'the wide and/or multiple contact points 1104-1105 is gen-
erated. Simultaneously, the voltage difference between that of
the contact plate/wire 1103 and that of the end of the resistive
element closest to an external contact point 1102a or 11025 is
still proportional to the distance from said end to said external
contact point. Using at most simple op-amp summing and/or
differential amplifiers 1108a, 11085, 1112, a number of
potential control voltages can be derived; for example one or
more of these continuously-valued signals:

value of distance difference between external contact

points (or “width”; as described above via constant cur-
rent source, nominal reference voltage, and differential
amplifier 1113

center of a non-trivial-width region (obtained by simple

averaging, i.e., sum with gain of %)
value of distance difference 11094 between one end of the
resistive element and the closest external contact point
(simple differential amplifier)

value of distance difference between the other end of the
resistive element and the other external contact point
(sum above voltage with “width” voltage with appropri-
ate sign) 11094.

Further, through use of simple threshold comparators, spe-
cific thresholds of shorted resistive element can be deemed to
be, for example, any of a single point contact, a recognized
contact region width, two points of contact, etc., producing
corresponding discrete-valued control signals. The detection
of a width can be treated as a contact event for a second
parameter analogous to the single contact detection event
described at the beginning. Some example usages of these
various continuous and discrete signals are:

existence of widths or multiple contact points may be used

to trigger events or timbre changes

degree of widths may be used to control degrees of modu-

lation or timbre changes

independent measurement of each external contact point

from the same end of the resistive element can be used to
independently control two parameters. In the simplest
form, one parameter is always larger than another; in
more complex implementations, the trajectories of each
contact point can be tracked (using a differentiator and
controlled parameter assignment switch); as long as they
never simultaneously touch, either parameter can vary
and be larger or smaller than the other.

It is understood that analogous approaches may be applied
to other null/contact touchpad technologies such as capacitive
or optical.

A third possible enhancement is that of employing a touch-
screen instance of null/contact touch-pad and positioning it
over a video display. The video display could for example
provide dynamically assigned labels, abstract spatial cues,
spatial gradients, line-of-site cues for fixed or motor-con-
trolled lighting, etc. which would be valuable for use in con-
junction with the adapted null/contact touch-pad controller.

These various methods of adapted null/contact touch-pad
elements can be used stand-alone or arranged in arrays. In
addition, they can be used as a component or addendum to
instruments featuring other types of instrument elements.
Pressure-Sensor Array Touch-Pads

The invention provides for use of a pressure-sensor array
arranged as a touch-pad together with associated image pro-
cessing. As with the null/contact controller, these pressure-
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sensor array touch-pads may be used stand-alone or orga-
nized into an array of such pads.
It is noted that the inventor’s original vision of the below
described pressure-sensor array touch-pad was for applica-
tions not only in music but also for computer data entry,
computer simulation environments, and real-time machine
control, applications to which the below described pressure-
sensor array touch-pad clearly can also apply.
A pressure-sensor array touch-pad of appropriate sensitiv-
ity range, appropriate “pixel” resolution, and appropriate
physical size is capable of measuring pressure gradients of
many parts of the flexibly-rich human hand or foot simulta-
neously. FIG. 2 shows how a pressure sensor array touch-pad
can be combined with image processing to assign parameter-
ized interpretations to measured pressure gradients and out-
put those parameters as control signals.
The pressure-sensor “pixels” of a pressure-sensor array
touch-pad 1300 are interfaced to a data acquisition stage
1301. The interfacing method may be fully parallel but in
practice may be advantageously scanned at a sufficiently high
rate to give good dynamic response to rapidly changing
human touch gestures. To avoid the need for a buffer amplifier
for each pressure-sensor pixel, electrical design may care-
fully balance parasitic capacitance of the scanned array with
the electrical characteristics of the sensors and the scan rates;
electrical scanning frequencies can be reduced by partition-
ing the entire array into distinct parts that are scanned in
parallel so as to increase the tolerance for address settling
times and other limiting processes.
Alternatively, the pressure-sensor array 1300 may be fab-
ricated in such a way that buffer amplifier arrays can be
inexpensively attached to the sensor array 1300, or the sen-
sors may be such that each contains its own buffer amplifier;
under these conditions, design restrictions on scanning can be
relaxed and operate at higher speeds. Although the pressure
sensors may be likely analog in nature, a further enhancement
would be to use digital-output pressure-sensor elements or
sub-arrays.
The data acquisition stage 1301 looks for sensor pixel
pressure measurement values that exceed a low-level noise-
rejection/deformity-rejection threshold. The sufficiently high
pressure value of each such sensor pixel is noted along with
the relative physical location of that pixel (known via the
pixel address). This noted information may be stored “raw”
for later processing and/or may be subjected to simple bound-
ary tests and then folded into appropriate running calculations
as will be described below. In general, the pressure values and
addresses of sufficiently high pressure value pixels are pre-
sented to a sequence of processing functions which may be
performed on the noted information:
contiguous regions of sufficiently high pressure values are
defined (a number of simple run-time adjacency tests
can be used; many are known—see for example [Ronse;
Viberg; Shapiro; Hara])

the full collection of region boundaries are subjected to
classification tests; in cases a given contiguous region
may be split into a plurality of tangent or co-bordered
independently recognized regions

various parameters are derived from each independent

region, for example geometric center, center of pressure,
average pressure, total size, angle-of-rotation-from ref-
erence for non-round regions, second-order and higher-
order geometric moments, second-order and higher-or-
der pressure moments, etc.

assignment of these parameters to the role of specific con-

trol signals (note events, control parameters, etc.) which
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are then output to a signal routing, processing, and syn-
thesis entity; for example, this may be done in the form
of MIDI messages.

Because of the number of processes involved in such a
pipeline, it is advantageous to follow a data acquisition stage
1301 with one or more additional processing stages 1303,
1305, 1309, and 1311. Of the four example processing func-
tions just listed, the first three fall in the character of image
processing. It is also possible to do a considerable amount of
the image processing steps actually within the data acquisi-
tion step, namely any of simple adjacency tests and folding
selected address and pressure measurement information into
running sums or other running pre-calculations later used to
derive aforementioned parameters. The latter method can be
greatly advantageous as it can significantly collapses the
amount of data to be stored.

Regardless of whether portions of the image processing are
done within or beyond the data acquisition stage, there are
various hardware implementations possible. One hardware
approach would involve very simple front-end scanned data
acquisition hardware and a single high-throughput micropro-
cessor/signal-processor chip. Alternatively, an expanded data
acquisition stage may be implemented in high-performance
dedicated function hardware and this would be connected to
a lower performance processor chip. A third, particularly
advantageous implementation would be to implement a small
pressure-sensor array together with data acquisition and a
small processor into a single low-profile chip package that
can be laid as tiles in a nearly seamless larger array. In such an
implementation all image processing could in fact be done via
straightforward partitions into message-passing distributed
algorithms.

One or more individual chips could direct output parameter
streams to an output processor which would organize and/or
assign parameters to output control channels, perhaps in a
programmable manner under selectable stored program con-
trol. A tiled macro array of such “sensor mini-array” chips
could be networked by a tapped passive bus, one- or two-
dimensional mode active bus daisy-chain, a potentially
expandable star-wired centralized message passing chip or
subsystem, or other means.

Creating a large surface from such “tile chips” will aid in
the serviceability of the surface. Since these chips can be used
as tiles to build a variety of shapes, it is therefore possible to
leverage a significant manufacturing economy-of-scale so as
to minimize cost and justify more extensive feature develop-
ment. Advanced seating and connector technologies, as used
in laptops and other high-performance miniature consumer
electronics, can be used to minimize the separation between
adjacent chip “tiles” and resultant irregularities in the tiled-
surface smoothness. A tiled implementation may also include
a thin rugged flexible protective film that separates the sensor
chips from the outside world. FIG. 3 illustrates the position-
ing and networking of pressure sensing and processing “mini-
array” chips 1400 in larger contiguous structures 1410.

With the perfection of a translucent pressure-sensor array,
it further becomes possible for translucent pressure-sensor
arrays to be laid atop aligned visual displays such as LCDs,
florescent, plasma, CRTs, etc. as was discussed above for
null/contact touch-pads. The displays can be used to label
areas of the sensor array, illustrate gradients, etc. FIG. 7
illustrates an example implementation involving dynamically
assigned labels on a video display 700 for use in conjunction
with a transparent touch-screen 701. Note that in the “tile
chip” implementation, monochrome or color display areas
may indeed be built into each chip.
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Returning now to the concept of a pressure-sensor array
touch-pad large enough for hand-operation: examples of
hand contact that may be recognized, example methods for
how these may be translated into control parameters, and
examples of how these all may be used are now described. In
the below the hand is used throughout as an example, but it is
understood that the foot or even other body regions, animal
regions, objects, or physical phenomena can replace the role
of the hand in these illustrative examples.

FIG. 4 illustrates the pressure profiles for a number of
example hand contacts with a pressure-sensor array. In the
case 1500 of a finger’s end, pressure on the touch-pad pres-
sure-sensor array can be limited to the finger tip, resulting in
a spatial pressure distribution profile 1501; this shape does
not change much as a function of pressure. Alternatively, the
finger can contact the pad with its flat region, resulting in light
pressure profiles 1502 which are smaller in size than heavier
pressure profiles 1503. In the case 1504 where the entire
finger touches the pad, a three-segment pattern (1504a,
15045, 1504¢) will result under many conditions; under light
pressure a two segment pattern (15045 or 1504¢ missing)
could result. In all but the lightest pressures the thumb makes
a somewhat discernible shape 1505 as do the wrist 1506, cuff
1507, and palm 1508; at light pressures these patterns thin and
can also break into disconnected regions. Whole hand pat-
terns such as the first 1511 and flat hand 1512 have more
complex shapes. In the case of the first 1511, a degree of curl
can be discerned from the relative geometry and separation of
sub-regions (here depicted, as an example, as 1511qa, 15115,
and 1511¢). In the case of the whole flat hand 1512, there can
be two or more sub-regions which may be in fact joined (as
within 1512a) and/or disconnected (as an example, as 1512a
and 15125 are); the whole hand also affords individual mea-
surement of separation “angles” among the digits and thumb
(1513a, 15135, 1513¢, 1513d) which can easily be varied by
the user.

Relatively simple pattern recognition software can be used
to discern these and other hand contact patterns which will be
termed “postures.” The pattern recognition working together
with simple image processing may, further, derive a very large
number of independent control parameters which are easily
manipulated by the operating user. In many cases it may be
advantageous to train a system to the particulars of a specific
person’s hand(s) and/or specific postures. In other situations
the system may be designed to be fully adaptive and adjust to
a person’s hand automatically. In practice, for the widest
range of control and accuracy, both training and ongoing
adaptation may be useful. Further, the recognized postures
described thus far may be combined in sequence with specific
dynamic variations among them (such as a finger flick,
double-tap, etc.) and as such may be also recognized and thus
treated as an additional type of recognized pattern; such
sequential dynamics among postures will be termed “ges-
tures.”

The admission of gestures further allows for the derivation
of additional patterns such as the degree or rate of variation
within one or more of the gesture dynamics. Finally, the
recognized existence and/or derived parameters from pos-
tures and gestures may be assigned to specific outgoing con-
trol signal formats and ranges. Any training information and/
or control signal assignment information may be stored and
recalled for one or more players via stored program control.

For each recognized pattern, the amount of information
that can be derived as parameters is in general very high. For
the human hand or foot, there are, typically, artifacts such as
shape variation due to elastic tissue deformation that permit

10

15

20

25

30

35

40

45

50

55

60

65

8

recovery of up to all six degrees of freedom allowed in an
object’s orientation in 3-space.

FIG. 5 illustrates how six degrees of freedom can be recov-
ered from the contact of a single finger. In the drawing, the
finger 1600 makes contact with the touch-pad 1601 with its
end segment at a point on the touch-pad surface determined
by coordinates 1611 and 1612 (these would be, for example,
left/right for 1611 and forward/backward for 1612). Fixing
this point of contact, the finger 1600 is also capable of rota-
tional twisting along its length 1613 as well as rocking back
and forth 1614. The entire finger can also be pivoted with
motion 1615 about the contact point defined by coordinates
1611 and 1612. These are all clearly independently controlled
actions, and yet it is still possible in any configuration of these
thus far five degrees of freedom, to vary the overall pressure
1616 applied to the contact point. Simple practice, if it is even
needed, allows the latter overall pressure 1616 to be indepen-
dently fixed or varied by the human operator as other param-
eters are adjusted.

In general other and more complex hand contacts, such as
use of two fingers, the whole hand, etc. forfeit some of these
example degrees of freedom but often introduce others. For
example, in the quite constrained case of a whole hand pos-
ture, the fingers and thumb can exert pressure independently
(5 parameters), the finger and thumb separation angles can be
varied (4 parameters), the finger ends 15044 can exert pres-
sure independently from the middle 15045 and inner 1504¢
segments (4 parameters), the palm can independently vary its
applied pressure (1 parameter) while independently tilting/
rocking in two directions (2 parameters) and the thumb can
curl (1 parameter), yielding 17 instantaneously and simulta-
neously measurable parameters which are independently
adjustable per hand. Complex contact postures may also be
viewed as, or decomposed into, component sub-postures (for
example here, as flat-finger contact, palm contact, and thumb
contact) which would then derive parameters from each pos-
ture independently. For such complex contact postures, rec-
ognition as a larger compound posture which may then be
decomposed allows for the opportunity to decouple and/or
renormalize the parameter extraction in recognition of the
special affairs associated with and constraints imposed by
specific complex contact postures.

It is noted that the derived parameters may be pre-pro-
cessed for specific uses. One example of this would be the
quantization of a parameter into two or more discrete steps;
these could for example be sequentially interpreted as
sequential notes of a scale or melody. Another example would
be that of warping a parameter range as measured to one with
a more musically expressive layout.

Next examples of the rich metaphorical aspects of interact-
ing with the pressure sensor array touch-pad are illustrated. In
many cases there may be one or more natural geometric
metaphor(s) applicable, such as associating left-right posi-
tion, left-right twisting, or left-right rotation with stereo pan-
ning, or in associating overall pressure with volume or spec-
tral complexity. In more abstract cases, there may be pairs of
parameters that go together—here, for example with a finger
end, it may be natural to associate one parameter pair with
(left/right and forward/backward) contact position and
another parameter pair with (left/right and forward/back-
ward) twisting/rocking. In this latter example there is avail-
able potential added structure in the metaphor by viewing the
twisting/rocking plane as being superimposed over the posi-
tion plane. The superposition aspect of the metaphor can be
viewed as an index, or as an input-plane/output-plane distinc-
tion for a two-input/two-output transformation, or as two
separated processes which may be caused to converge or
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morph according to additional overall pressure, or in conjunc-
tion with a dihedral angle of intersection between two inde-
pendent processes, etc.

Next, examples of the rich syntactical aspects of interact-
ing with the pressure-sensor array touch-pad are illustrated.
Some instruments have particular hand postures naturally
associated with their playing. It is natural then to recognize
these classical hand-contact postures and derive control
parameters that match and/or transcend how a classical player
would use these hand positions to evoke and control sound
from the instrument. Further, some postures could be recog-
nized either in isolation or in gestural-context as being ones
associated with (or assigned to) percussion effects while
remaining postures may be associated with accompanying
melodies or sound textures.

As an additional syntactic aspect, specific hand postures
and/or gestures may be mapped to specific selected assign-
ments of control signals in ways affiliated with specific pur-
poses. For example, finger ends may be used for one collec-
tion of sound synthesis parameters, thumb for a second
potentially partially overlapping collection of sound synthe-
sis parameters, flat fingers for a third partially-overlapping
collection, wrist for a fourth, and cuff for a fifth, and first for
a sixth. Inthis case it may be natural to move the hand through
certain connected sequences of motions; for example: little
finger end, still in contact, dropping to flat-finger contact, then
dropping to either palm directly or first to cuff and then to
palm, then moving to wrist, all never breaking contact with
the touch-pad. Such permissible sequences of postures that
can be executed sequentially without breaking contact with
the touch-pad will be termed “continuous grammars.”

Under these circumstances it is useful to set up parameter
assignments, and potentially associated context-sensitive
parameter renormalizations, that work in the context of
selected (or all available) continuous grammars. For example,
as the hand contact evolves as being recognized as one pos-
ture and then another, parameters may be smoothly handed-
over in interpretation from one posture to another without
abrupt changes, while abandoned parameters either hold their
last value or return to a default value (instantly or via a
controlled envelope).

Now a number of example applications of the pressure-
sensor array touchpad are provided. It is known to be possible
and valuable to use the aforementioned pressure-sensor array
touch-pad, implicitly containing its associated data acquisi-
tion, processing, and assignment elements, for many, many
applications such as general machine control and computer
workstation control. One example of machine control is in
robotics: here a finger might be used to control a hazardous
material robot hand as follows:

left/right position: left/right hand position

in/out position: in/out hand position

in/out rock: up/down hand position

rotation: hand grip approach angle

overall pressure: grip strength

left/right twist: gesture to lock or release current grip from

pressure control

A computer workstation example may involve a graphical
Computer-Aided Design application currently requiring
intensive mouse manipulation of parameters one or two at a
time:

left/right position: left/right position of a selected symbol

in a 2-D CAD drawing

in/out position: up/down position of a selected symbol in

2-D CAD drawing
left/right twist: symbol
through 2-D palette

selection—Ileft/right motion
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in/out rock: symbol selection—up/down motion through
2-D palette

rotation: rotation of selected symbol in the drawing

overall pressure: sizing by steps

tap of additional finger: lock selection into drawing or

unlock for changes

tap of thumb: undo

palm: toggle between add new object and select existing

object

Clearly a symbol can be richly interactively selected and
installed or edited in moments as opposed to tens to hundreds
of seconds as is required by mouse manipulation of param-
eters one or two at a time and the necessary mode-changes
needed to change the mouse action interpretation.
Touch-Pad Array

Touch-pad instrument elements, such as null/contact types
and pressure-sensor array types described earlier, can be used
in isolation or arrays to create electronic controller instru-
ments. The touch-pad(s) may be advantageously supple-
mented with panel controls such as push buttons, sliders,
knobs as well as impact sensors for velocity-controlled trig-
gering of percussion or pitched note events. If one or more of
the touch-pads is transparent (as in the case of a null/contact
touch screen overlay) one or more video, graphics, or alpha-
numeric displays 2711 may placed under a given pad or group
of pads.

FIG. 6 illustrates examples of single 2710, double 2720,
and quadruple 2730 touchpad instruments with pads of vari-
ous sizes. A single touch-pad could serve as the central ele-
ment of such an instrument, potentially supplemented with
panel controls such as push buttons 2714, sliders 2715, knobs
2716 as well as impact sensors. In FIG. 6, a transparent pad
superimposed over a video, graphics, or one or more alpha-
numeric displays is assumed, and specifically shown is a case
ofunderlay graphics cues being displayed for the player. Two
large sensors can be put side by side to serves as a general
purpose left-hand/right-hand multi-parameter controller.

All publications and patent applications mentioned in this
specification are herein incorporated by reference to the same
extent as if each individual publication or patent application
was specifically and individually indicated to be incorporated
by reference. The invention now being fully described, it will
be apparent to one of ordinary skill in the art that many
changes and modifications can be made thereto without
departing from its spirit or scope.
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The invention claimed is:

1. An apparatus comprising:

a transparent touchpad positioned over a visual display, the

transparent touchpad configured to sense a contiguous
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region of contact from at least a portion of a human hand
on a surface of the transparent touchpad, the transparent
touch pad comprising a sensor array having a plurality of
sensors, each sensor having a unique spatial location and
an associated unique address, wherein the transparent
touch pad is configured to sense the contiguous region of
contact by a generation of sensor measurement values
associated with each of the plurality of sensors, wherein
a plurality of sensor spatial locations are configured to
provide associated sensor measurement values respon-
sive to the contiguous region of contact;

avalue of at least one control parameter for the contiguous

region of contact responsive to a measured change in at
least one of the associated sensor measurement values,
the value obtained by performing a calculation on the
associated sensor measurement values and interpreting
the results as signifying a finger flick touch gesture,
wherein the at least one control parameter is associated
with the finger flick touch gesture; and

at least one derived control parameter assigned to a specific

control signal;

wherein the finger flick touch gesture is recognized from

sequential dynamics among postures derived from spa-
tial pressure distribution profiles.

2. The apparatus of claim 1 wherein the transparent touch
pad is configured to sense the contiguous region of contact by
determining the pressure values and coordinates for selected
pixels associated with the portion of the human hand on the
surface of the transparent touchpad.

3. The apparatus of claim 1, wherein the transparent touch
pad is configured to determine the sequential dynamics
among postures based on a pattern for the contiguous region
of contact.

4. The apparatus of claim 1, wherein the transparent touch
pad is configured to sense the contiguous region of contact by
a generation of the associated sensor measurement values
based on identifying a point of contact for the sensed region of
contact relative to the surface of the transparent touchpad.

5. The apparatus of claim 1, wherein the transparent touch-
pad is configured to sense the contiguous region of contact by
a generation of the associated sensor measurement values
based on identifying measurement values that exceed a
threshold.

6. The apparatus of claim 1, wherein the transparent touch
pad is further configured to track a trajectory of movement of
the portion of the human hand contacting the surface of the
transparent touchpad.

7. The apparatus of claim 1, wherein the visual display is
further configured to provide dynamically assigned labels.

8. The apparatus of claim 1, wherein at least one control
parameter is responsive to a geometric center of the contigu-
ous region of measurement values.

9. The apparatus of claim 1, wherein at least one control
parameter is responsive to a center of pressure of the contigu-
ous region of measurement values.
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10. The apparatus of claim 1, wherein at least one control
parameter is responsive to an average pressure of the contigu-
ous region of measurement values.

11. The apparatus of claim 1, wherein at least one control
parameter is responsive to a total size of the contiguous region
of measurement values.

12. The apparatus of claim 1, wherein the transparent touch
pad is further configured to sense at least a second contiguous
region of contact from another portion of a human hand on a
surface of the transparent touchpad, and the apparatus is
configured to derive a value of at least another control param-
eter responsive the second contiguous region of contact.

13. An apparatus comprising:

a transparent touch sensor array comprising a plurality of
transparent sensors positioned over a display associated
with the apparatus to form a transparent touchpad,
wherein the transparent touch sensor array is configured
to sense contact with one or more fingers on a corre-
sponding contiguous region on the transparent touch
pad, wherein each transparent sensor of the plurality of
transparent sensors has a corresponding spatial location,
associated address, and is configured to provide associ-
ated sensor measurement values;

at least one control parameter associated with a finger flick
touch gesture, the finger flick touch gesture recognized
from sequential dynamics among postures derived from
spatial pressure distribution profiles and associated with
a measured change to at least one of the associated
sensor measurement values; and

at least one control signal associated with the at least one
control parameter; and

wherein the finger flick touch gesture corresponds to one or
more interactions with displayed visual content of an
application operating on the apparatus.

14. The apparatus of claim 13, wherein the postures are
associated with a single continuous touching of the transpar-
ent touch sensor array.

15. The apparatus of claim 13, wherein the display is con-
figured to dynamically provide at least one label at a corre-
sponding spatial location of at least one of the plurality for
transparent sensors in response to the control signals.

16. The apparatus of claim 13, wherein the display is con-
figured to control displayed visual content based on control-
ling at least one of a selection, a motion, and a sizing of the
displayed visual content.

17. The apparatus of claim 13, wherein the spatial pressure
distribution profiles consist of one or more shapes of hand
contact patterns.

18. The apparatus of claim 13, further comprising at least
one control parameter associated with another touch gesture,
the another touch gesture recognized from sequential dynam-
ics among postures derived from spatial pressure distribution
profiles and associated with a measured change to at least one
of the associated sensor measurement values.
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